0000000000278377

AUTHOR

Ludger Wirtz

0000-0001-5618-3465

Excitons in few-layer hexagonal boron nitride: Davydov splitting and surface localization

Hexagonal boron nitride (hBN) has been attracting great attention because of its strong excitonic effects. Taking into account few-layer systems, we investigate theoretically the effects of the number of layers on quasiparticle energies, absorption spectra, and excitonic states, placing particular focus on the Davydov splitting of the lowest bound excitons. We describe how the inter-layer interaction as well as the variation in electronic screening as a function of layer number $N$ affects the electronic and optical properties. Using both \textit{ab initio} simulations and a tight-binding model for an effective Hamiltonian describing the excitons, we characterize in detail the symmetry of t…

research product

Time-dependent screening explains the ultrafast excitonic signal rise in 2D semiconductors

We calculate the time evolution of the transient reflection signal in an MoS$_2$ monolayer on a SiO$_2$/Si substrate using first-principles out-of-equilibrium real-time methods. Our simulations provide a simple and intuitive physical picture for the delayed, yet ultrafast, evolution of the signal whose rise time depends on the excess energy of the pump laser: at laser energies above the A- and B-exciton, the pump pulse excites electrons and holes far away from the K valleys in the first Brillouin zone. Electron-phonon and hole-phonon scattering lead to a gradual relaxation of the carriers towards small $\textit{Active Excitonic Regions}$ around K, enhancing the dielectric screening. The acc…

research product

Exciton-Phonon Coupling in the Ultraviolet Absorption and Emission Spectra of Bulk Hexagonal Boron Nitride

We present an \textit{ab initio} method to calculate phonon-assisted absorption and emission spectra in the presence of strong excitonic effects. We apply the method to bulk hexagonal BN which has an indirect band gap and is known for its strong luminescence in the UV range. We first analyse the excitons at the wave vector $\overline{q}$ of the indirect gap. The coupling of these excitons with the various phonon modes at $\overline{q}$ is expressed in terms of a product of the mean square displacement of the atoms and the second derivative of the optical response function with respect to atomic displacement along the phonon eigenvectors. The derivatives are calculated numerically with a fin…

research product

Strong Exciton-Coherent Phonon Coupling in Single-Layer MoS2

Broadband transient absorption with sub-20fs temporal resolution, supported by ab-initio calculations, quantitatively provides the strength of exciton-coherent phonon coupling in 1L-MoS2, showing a resonant profile around the C exciton.

research product

Intravalley spin-flip relaxation dynamics in single-layer WS2

Two-dimensional Transition Metal Dichalcogenides (TMDs) have been widely studied because of the peculiar electronic band structure and the strong excitonic effects [1]. In these materials the large spin-orbit coupling lifts the spin degeneracy of the valence (VB) and the conduction band (CB) giving rise to the A and B interband excitonic transitions. In monolayer WS2, the spins of electrons in the lowest CB and in the highest VB at K/K' point of the Brillouin zone are antiparallel resulting in an intravalley dark exciton state at a lower energy than the bright exciton, see left panel of Fig.1. On the one hand, the presence of dark excitons has been revealed indirectly from the observation o…

research product

Tuning the Pseudospin Polarization of Graphene by a Pseudomagnetic Field.

One of the intriguing characteristics of honeycomb lattices is the appearance of a pseudo-magnetic field as a result of mechanical deformation. In the case of graphene, the Landau quantization resulting from this pseudo-magnetic field has been measured using scanning tunneling microscopy. Here we show that a signature of the pseudo-magnetic field is a local sublattice symmetry breaking observable as a redistribution of the local density of states. This can be interpreted as a polarization of graphene's pseudospin due to a strain induced pseudo-magnetic field, in analogy to the alignment of a real spin in a magnetic field. We reveal this sublattice symmetry breaking by tunably straining grap…

research product

Real-time observation of the intravalley spin-flip process in single-layer WS2

We use helicity-resolved transient absorption spectroscopy to track intravalley scattering dynamics in monolayer WS2. We find that spin-polarized carriers scatter from upper to lower conduction band by reversing their spin orientation on a sub-ps timescale.

research product

Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers

Accurately described excitonic properties of transition metal dichalcogenide heterobilayers (HBLs) are crucial to comprehend the optical response and the charge carrier dynamics of them. Excitons in multilayer systems possess an inter- or intralayer character whose spectral positions depend on their binding energy and the band alignment of the constituent single layers. In this paper, we report the electronic structure and the absorption spectra of ${\mathrm{MoS}}_{2}/{\mathrm{WS}}_{2}$ and ${\mathrm{MoSe}}_{2}/{\mathrm{WSe}}_{2}$ HBLs from first-principles calculations. We explore the spectral positions, binding energies, and the origins of inter- and intralayer excitons and compare our re…

research product

Strongly Coupled Coherent Phonons in Single-Layer MoS 2

We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution ($\sim$20fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single layer (1L) MoS$_2$, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane $A'_{1}$ phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a timescale of few tens fs. We observe an enhancement by…

research product