0000000000278430

AUTHOR

Nishita Desai

0000-0001-7942-1649

showing 3 related works from this author

A comprehensive guide to the physics and usage of PYTHIA 8.3

2022

This manual describes the PYTHIA 8.3 event generator, the most recent version of an evolving physics tool used to answer fundamental questions in particle physics. The program is most often used to generate high-energy-physics collision "events", i.e. sets of particles produced in association with the collision of two incoming high-energy particles, but has several uses beyond that. The guiding philosophy is to produce and reproduce properties of experimentally obtained collisions as accurately as possible. The program includes a wide ranges of reactions within and beyond the Standard Model, and extending to heavy ion physics. Emphasis is put on phenomena where strong interactions play a ma…

showers [parton]numeeriset menetelmätnew physicskäsikirjatFOS: Physical scienceshiukkasfysiikkamanualprogrammingheavy ionHigh Energy Physics - ExperimentMonte Carlo -menetelmätHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)PYTHIAquantum chromodynamicsalgoritmitinterfacekvanttiväridynamiikkaohjelmointinumerical calculationsMonte Carlo
researchProduct

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

2020

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…

HIGH-ENERGYbeyond the Standard Modellarge hadron colliderPhysics::Instrumentation and DetectorsPROTON-PROTON COLLISIONSPhysics beyond the Standard Modelbeyond the standard model01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)high-luminosity lhcHigh Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESlong-lived [particle]high-energy collider experimentsdecay: vertexscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]long-lived particlesQCproposed [detector]Physicslifetimedark gauge forcesLarge Hadron ColliderCMSROOT-S=13 TEVroot-s=13 tevPhysicsnew physics: search forscale: electroweak interactionhep-phATLASelectroweak interaction [scale]vertex [decay]upgrade [detector]High Energy Physics - Experiment; High Energy Physics - Experiment; High Energy Physics - Phenomenologydetector: upgradeSettore FIS/02 - Fisica Teorica Modelli e Metodi Matematiciprimary [vertex]ddc:High Energy Physics - PhenomenologyCERN LHC CollLarge Hadron Colliderbaryon asymmetryvertex: primaryLHCcolliding beams [p p]exclusion limitspp collisionsParticle Physics - ExperimentsignatureNuclear and High Energy PhysicsParticle physicsp p: scatteringCERN LabPAIR PRODUCTIONcollider phenomenologyreviewFOS: Physical sciencesDARK GAUGE FORCES530search for [new physics]BARYON ASYMMETRY0103 physical sciencesddc:530010306 general physicsnumerical calculationsParticle Physics - PhenomenologyEXCLUSION LIMITSmagnetic monopolesPP COLLISIONS010308 nuclear & particles physicshep-exbackgroundbibliographyshowersMAJORANA NEUTRINOSCollisiontracksLHC-Bdetector: proposedhigh-luminosity LHCpair productionMATHUSLAPhysics and Astronomy[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]proton-proton collisionshigh-energymajorana neutrinosparticle: long-livedp p: colliding beamsPhysics BSMexperimental results
researchProduct

Is charged lepton flavor violation a high energy phenomenon?

2013

Searches for rare processes such as mu --> e gamma put stringent limits on lepton flavour violation expected in many Beyond the Standard Model physics scenarios. This usually precludes the observation of flavour violation at high energy colliders such as the LHC. We here discuss a scenario where right-handed neutrinos are produced via a Z' portal but which can only decay via small flavour violating couplings. Consequently, the process rate is unsuppressed by the small couplings and can be visible despite unobservably small mu --> e gamma rates.

PhysicsNuclear and High Energy PhysicsParticle physicsHigh energyLarge Hadron ColliderPhysics::Instrumentation and Detectors010308 nuclear & particles physicsPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciences01 natural sciencesProcess rateHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHigh Energy Physics::ExperimentNeutrino010306 general physicsEnergy (signal processing)FlavorLeptonPhysical Review D
researchProduct