0000000000278437

AUTHOR

Peter Skands

showing 8 related works from this author

A comprehensive guide to the physics and usage of PYTHIA 8.3

2022

This manual describes the PYTHIA 8.3 event generator, the most recent version of an evolving physics tool used to answer fundamental questions in particle physics. The program is most often used to generate high-energy-physics collision "events", i.e. sets of particles produced in association with the collision of two incoming high-energy particles, but has several uses beyond that. The guiding philosophy is to produce and reproduce properties of experimentally obtained collisions as accurately as possible. The program includes a wide ranges of reactions within and beyond the Standard Model, and extending to heavy ion physics. Emphasis is put on phenomena where strong interactions play a ma…

showers [parton]numeeriset menetelmätnew physicskäsikirjatFOS: Physical scienceshiukkasfysiikkamanualprogrammingheavy ionHigh Energy Physics - ExperimentMonte Carlo -menetelmätHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)PYTHIAquantum chromodynamicsalgoritmitinterfacekvanttiväridynamiikkaohjelmointinumerical calculationsMonte Carlo
researchProduct

Review of Particle Physics

2020

The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, …

high energyleptonmixing [neutrino]High Energy Physics::LatticeCosmic microwave backgrounddiffractionTechnicolorAstrophysicsOmega01 natural sciencesPhysics Particles & Fieldshiggs-boson productionBig Bang nucleosynthesiscosmological model: parameter spacetaudark energyMonte CarlofieldspentaquarkinstrumentationSettore FIS/01gauge bosonAnomalous magnetic dipole momentdeep-inelastic scatteringnew physicsPhysicsDOUBLE-BETA-DECAYElectroweak interactiondensity [dark matter]HEAVY FLAVOURQuarkoniumreview; particle; physicsSUPERSYMMETRIC STANDARD MODELsquare-root-sPhysics Nucleargrand unified theoryboson: heavystatisticsPhysical SciencesHiggs bosonaxion: massflavor: violationNeutrinoELECTROWEAK SYMMETRY-BREAKINGnumerical calculations: Monte Carlophysicson-lineS013EPHQuarkheavy [boson]particle[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Physics Multidisciplinaryanomalous magnetic-momentelectroweak radiative-correctionsdark matter: densityHiggs particlemesonneutrino masses neutrino mixing; neutrino oscillations114 Physical sciencesCHIRAL PERTURBATION-THEORYneutrino mixingStandard Modelquark0202 Atomic Molecular Nuclear Particle And Plasma PhysicsNucleosynthesisquantum chromodynamicsCP: violationDark matterddc:530particle physicsStrong Interactions010306 general physicssparticleS013DFgrand unified theoriesPRODUCTIONGauge bosonScience & Technologyneutrino oscillationsneutrino masses010308 nuclear & particles physicsC50 Other topics in experimental particle physicsParticle Data GroupAstronomy and AstrophysicsDeep inelastic scatteringto-leading-order* Automatic Keywords *heavy bosonaxiontables (particle physics)Tetraquarkproton-proton collisionsSupersymmetryhadronneutrino: mixing[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyVolume (compression)HIGGS-BOSONUB-VERTICAL-BARcosmological modeldark energy densityexperimental methodsddc:539.72021Physics beyond the Standard Modelstandard modelgroup theoryGeneral Physics and Astronomytables particle physicshigh energy physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum chromodynamicsPhysicsenergy: highE Rev 2016[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Settore FIS/01 - Fisica SperimentalephotonSupersymmetryNuclear & Particles Physicsparameter space [cosmological model]dark energy: densityhigh [energy]M013WXfermion-pair productionNuclear and High Energy PhysicsParticle physicsHiggs bosonreviewAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & Astrophysics530dark matterstatistical analysisDouble beta decay0103 physical sciencesconservation lawcold dark-matterTAU LEPTONSAstrophysics::Galaxy AstrophysicstablesDEEP-INELASTIC-SCATTERINGelectroweak interactionHigh Energy Physics::Phenomenology750 GeV diphoton excessPRODUCTION CROSS-SECTIONbaryondensity [dark energy]Physics and AstronomygravitationCKM matrix[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentsupersymmetryMinimal Supersymmetric Standard Model
researchProduct

Determination of the top quark mass circa 2013: methods, subtleties, perspectives

2013

We present an up-to-date overview of the problem of top quark mass determination. We assess the need for precision in the top mass extraction in the LHC era together with the main theoretical and experimental issues arising in precision top mass determination. We collect and document existing results on top mass determination at hadron colliders and map the prospects for future precision top mass determination at e+e- colliders. We present a collection of estimates for the ultimate precision of various methods for top quark mass extraction at the LHC.

PhysicsParticle physicsTop quarkLarge Hadron ColliderPhysics and Astronomy (miscellaneous)HadronHigh Energy Physics::PhenomenologyFOS: Physical sciencesComputer Science::Computers and SocietyHigh Energy Physics - ExperimentNonlinear Sciences::Chaotic DynamicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Nonlinear Sciences::Exactly Solvable and Integrable SystemsPhysics::Atomic and Molecular ClustersEngineering (miscellaneous)Particle Physics - PhenomenologyThe European Physical Journal C
researchProduct

Flavour Les Houches Accord: Interfacing Flavour related Codes

2010

14 páginas, 2 tablas.-- arXiv:1008.0762v2.-- Mahmpudi, F. et al.

Particle physicsHigh Energy Physics::LatticeFlavourGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsParticle Physics - PhenomenologyPhysics010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyObservableSupersymmetryLes Houches AccordHigh Energy Physics - PhenomenologyStandard Model (mathematical formulation)Hardware and ArchitectureInterfacing[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentFlavour physicsComput.Phys.Commun.
researchProduct

Some remarks on dipole showers and the DGLAP equation

2009

It has been argued recently that parton showers based on colour dipoles conflict with collinear factorization and do not lead to the correct DGLAP equation. We show that this conclusion is based on an inappropriate assumption, namely the choice of the gluon energy as evolution variable. We further show numerically that Monte Carlo programs based on dipole showers with "infrared sensible" evolution variables reproduce the DGLAP equation both in asymptotic form as well as in comparison to the leading behaviour of second-order QCD matrix elements.

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::PhenomenologyMonte Carlo methodFOS: Physical sciencesPartonGluonDipoleColor modelHigh Energy Physics - PhenomenologyDGLAPHigh Energy Physics - Phenomenology (hep-ph)FactorizationHigh Energy Physics::Experiment
researchProduct

Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs

2014

We present an update of the Binoth Les Houches Accord (BLHA) to standardise the interface between Monte Carlo programs and codes providing one-loop matrix elements.

Interface (Java)Computer scienceCollider physics530 PhysicsMonte Carlo methodGeneral Physics and AstronomyFOS: Physical sciences10192 Physics Institute01 natural sciencesComputational scienceMatrix (mathematics)AutomationPhysics and Astronomy (all)High Energy Physics - Phenomenology (hep-ph)Collider physic0103 physical sciencesStatistical physics010306 general physicsCollider physicsParticle Physics - PhenomenologyMonte Carlo programNLO computationNLO computationsLOOP (programming language)010308 nuclear & particles physics1708 Hardware and ArchitectureMonte Carlo programsLes Houches Accord3100 General Physics and AstronomyHigh Energy Physics - PhenomenologyHardware and Architecture[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Computer Science::Programming Languagesddc:004
researchProduct

Estimating QCD uncertainties in Monte Carlo event generators for gamma-ray dark matter searches

2018

Motivated by the recent galactic center gamma-ray excess identified in the Fermi-LAT data, we perform a detailed study of QCD fragmentation uncertainties in the modeling of the energy spectra of gamma-rays from Dark-Matter (DM) annihilation. When Dark-Matter particles annihilate to coloured final states, either directly or via decays such as $W^{(*)}\to q\bar{q}'$, photons are produced from a complex sequence of shower, hadronisation and hadron decays. In phenomenological studies, their energy spectra are typically computed using Monte Carlo event generators. These results have however intrinsic uncertainties due to the specific model used and the choice of model parameters, which are diffi…

dark matter simulationsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)PhotonAstrophysics::High Energy Astrophysical Phenomenamodel [hadronization]SLDgamma ray theoryDark matterMonte Carlo methodHadronFOS: Physical sciencesmass [dark matter]01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)fragmentationquantum chromodynamics0103 physical sciencesconservation lawddc:530High Energy PhysicsMonte Carloenergy spectrum [gamma ray]Quantum chromodynamicsPhysicsdark matter theoryAnnihilation010308 nuclear & particles physicsphotonGamma rayCERN LEP StorAstronomy and AstrophysicsshowersGalaxyHigh Energy Physics - PhenomenologyannihilationExperimental High Energy PhysicsHigh Energy Physics::Experimentgalaxydecay [hadron]GLAST [interpretation of experiments]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Supersymmetry parameter analysis: SPA convention and project.

2005

18 páginas, 6 figuras, 12 tablas.-- et al.

Quantum Field TheoryScheme (programming language)Particle physicsCold dark matterExperimental PhysicsPhysics and Astronomy (miscellaneous)FOS: Physical sciences01 natural scienceslaw.inventionSet (abstract data type)High Energy Physics - Phenomenology (hep-ph)law0103 physical sciencesddc:530010306 general physicsColliderEngineering (miscellaneous)Particle Physics - PhenomenologyNuclear Physicscomputer.programming_languagePhysicsLarge Hadron Collider010308 nuclear & particles physicsFísicaObservableSupersymmetryPhysics beyond the Standard ModelHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Production (computer science)computerElementary Particles
researchProduct