0000000000278476
AUTHOR
Simon Aldridge
Arene C−H Activation at Aluminium(I): meta Selectivity Driven by the Electronics of S N Ar Chemistry
The reactivity of the electron-rich anionic Al(I) ('aluminyl') compound K 2 [(NON)Al] 2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di- tert -butyl-9,9-dimethylxanthene) towards mono- and disubstituted arenes is reported. C-H activation chemistry with n -butylbenzene gives exclusively the product of activation at the arene meta position. Mechanistically, this transformation proceeds in a single step via a concerted Meisenheimer-type transition state. Selectivity is therefore based on similar electronic factors to classical S N Ar chemistry, which implies the destabilization of transition states featuring electron-donating groups in either the ortho or the para positions. In the cases of tolu…
The Aluminyl Anion : A New Generation of Aluminium Nucleophile
Trivalent aluminium compounds are well known for their reactivity as Lewis acids/electrophiles, a feature that is exploited in many pharmaceutical, industrial and laboratory-based reactions. Recently, a series of isolable aluminium(I) anions ('aluminyls') have been reported, which offer an alternative to this textbook description: these reagents behave as aluminium nucleophiles. This minireview covers the synthesis, structure and reactivity of aluminyl species reported to date, together with their associated metal complexes. The frontier orbitals of each of these species have been investigated using a common methodology to allow for a like-for-like comparison of their electronic structure a…
Cooperative N–H bond activation by amido-Ge(ii) cations
N-heterocyclic carbene (NHC) and tertiary phosphine-stabilized germylium-ylidene cations, [R(L)Ge:]+, featuring tethered amido substituents at R have been synthesized via halide abstraction. Characterization in the solid state by X-ray crystallography shows these systems to be monomeric, featuring a two-coordinate C,N- or P,N-ligated germanium atom. The presence of the strongly Lewis acidic cationic germanium centre and proximal amide function allows for facile cleavage of N-H bonds in 1,2-fashion: the products resulting from reactions with carbazole feature a tethered secondary amine donor bound to a three-coordinate carbazolyl-GeII centre. In each case, addition of the components of the N…
Carbon monoxide activation by a molecular aluminium imide: C-O bond cleavage and C-C bond formation
Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K2 [(NON)Al(NDipp)]2 (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene; Dipp=2,6-diisopropylphenyl) structural characterization by X-ray crystallography reveals a short Al-N distance, which is thought primarily to be due to the low coordinate nature of the nitrogen centre. The Al-N unit is highly polar, and capable of the activation of relatively inert chemical bonds, such as those found in dihydrogen and carbon monoxide. In the case of CO, uptake of two molecules of the substrate…
Reversible O-H bond activation by an intramolecular frustrated Lewis pair
The interactions of the O–H bonds in alcohols, water and phenol with dimethylxanthene-derived frustrated Lewis pairs (FLPs) have been probed. Within the constraints of this backbone framework, the preference for adduct formation or O–H bond cleavage to give the corresponding zwitterion is largely determined by pKa considerations. In the case of the PPh2/B(C6F5)2 system and p-tBuC6H4OH, an equilibrium is established between the two isomeric forms which allows the thermodynamic parameters associated with zwitterion formation via O–H bond cleavage to be probed. peerReviewed
A nucleophilic gold complex.
Solid-state auride salts featuring the negatively charged Au– ion are known to be stable in the presence of alkali metal counterions. While such electron-rich species might be expected to be nucleophilic (in the same manner as I–, for example), their instability in solution means that this has not been verified experimentally. Here we report a two-coordinate gold complex (NON)AlAuPtBu3 (where NON is the chelating tridentate ligand 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) that features a strongly polarized bond, Auδ––Alδ+. This is synthesized by reaction of the potassium aluminyl compound [K{Al(NON)}]2 with tBu3PAuI. Computational studies of the complex, includ…
Probing the Extremes of Covalency in M-Al bonds: Lithium and Zinc Aluminyl Compounds.
Synthetic routes to lithium, magnesium, and zinc aluminyl complexes are reported, allowing for the first structural characterization of an unsupported lithium-aluminium bond. Crystallographic and quantum-chemical studies are consistent with the presence of a highly polar Li-Al interaction, characterized by a low bond order and relatively little charge transfer from Al to Li. Comparison with magnesium and zinc aluminyl systems reveals changes to both the M-Al bond and the (NON)Al fragment (where NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene), consistent with a more covalent character, with the latter complex being shown to react with CO<sub>2</sub> vi…
Trapping and Reactivity of a Molecular Aluminium Oxide Ion
Aluminium oxides constitute an important class of inorganic compound that are widely exploited in the chemical industry as catalysts and catalyst supports. Due to the tendency for such systems to aggregate via Al‐O‐Al bridges, the synthesis of well‐defined, soluble, molecular models for these materials is challenging. Here we show that reactions of the potassium aluminyl complex K 2 [( NON )Al] 2 ( NON = 4,5‐bis(2,6‐diiso‐propylanilido)‐2,7‐di‐tert‐butyl‐9,9‐dimethylxanthene) with CO 2 , PhNCO and N 2 O all proceed via a common aluminium oxide intermediate. This highly reactive species can be trapped by coordination of a THF molecule as the anionic oxide complex [( NON )AlO(THF)] ‐ , which …
A crystalline radical cation derived from Thiele’s hydrocarbon with redox range beyond 1 V
Thiele’s hydrocarbon occupies a central role as an open-shell platform for new organic materials, however little is known about its redox behaviour. While recent synthetic approaches involving symmetrical carbene substitution of the CPh2 termini yield isolable neutral/dicationic analogues, the intervening radical cations are much more difficult to isolate, due to narrow compatible redox ranges (typically 1 V), permitting its isolation in crystalline form. Further single-electron oxidation affords borenium dication 12+, thereby establishing an organoboron redox system fully characterized in all three redox states. We perceive that this strategy can be extended to other transient organic rad…
Carbon Monoxide Activation by a Molecular Aluminium Imide: C−O Bond Cleavage and C−C Bond Formation
Anionic molecular imide complexes of aluminium are accessible via a rational synthetic approach involving the reactions of organo azides with a potassium aluminyl reagent. In the case of K 2 [( NON )Al(NDipp)] 2 ( NON = 4,5‐bis(2,6‐di iso propylanilido)‐2,7‐di‐tert‐butyl‐9,9‐dimethyl‐xanthene; Dipp = 2,6‐di iso propylphenyl) structural characterization by X‐ray crystallography reveals a short Al‐N distance, which is thought to be due primarily to the low coordinate nature of the nitrogen centre. The Al‐N unit is highly polar, and capable of the activation of relatively inert chemical bonds, such as those found in dihydrogen and carbon monoxide. In the case of CO, uptake of two molecules of …
Probing the non-innocent nature of an amino-functionalised β-diketiminate ligand in silylene/iminosilane systems
Electron-rich β-diketiminate ligands{,} featuring amino groups at the backbone β positions (“N-nacnac” ligands) have been employed in the synthesis of a range of silylene (SiII) complexes of the type (N-nacnac)SiX (where X = H{,} Cl{,} N(SiMe3)2{,} P(SiMe3)2 and Si(SiMe3)3). A combination of experimental and quantum chemical approaches reveals (i) that in all cases rearrangement to give an aza-butadienyl SiIV imide featuring a contracted five-membered heterocycle is thermodynamically favourable (and experimentally viable); (ii) that the kinetic lability of systems of the type (N-nacnac)SiX varies markedly as a function of X{,} such that compounds of this type can be isolated under ambient c…
Controlling Oxidative Addition and Reductive Elimination at Tin(I) via Hemi-Lability.
We report on the synthesis of a distannyne supported by a pincer ligand bearing pendant amine donors that is capable of reversibly activating E–H bonds at one or both of the tin centres through dissociation of the hemi-labile N–Sn donor/acceptor interactions. This chemistry can be exploited to sequentially (and reversibly) assemble mixed-valence chains of tin atoms of the type ArSn{Sn(Ar)H} n SnAr ( n = 1, 2). The experimentally observed (decreasing) propensity towards chain growth with increasing chain length can be rationalized both thermodynamically and kinetically by the electron-withdrawing properties of the –Sn(Ar)H– backbone units generated via oxidative addition. peerReviewed
Probing the non-innocent nature of an amino-functionalised β-diketiminate ligand in silylene/iminosilane systems.
Electron-rich β-diketiminate ligands, featuring amino groups at the backbone β positions (“N-nacnac” ligands) have been employed in the synthesis of a range of silylene (SiII) complexes of the type (N-nacnac)SiX (where X = H, Cl, N(SiMe3)2, P(SiMe3)2 and Si(SiMe3)3). A combination of experimental and quantum chemical approaches reveals (i) that in all cases rearrangement to give an aza-butadienyl SiIV imide featuring a contracted five-membered heterocycle is thermodynamically favourable (and experimentally viable); (ii) that the kinetic lability of systems of the type (N-nacnac)SiX varies markedly as a function of X, such that compounds of this type can be isolated under ambient conditions …
Arene C‐H activation at aluminium(I) : meta selectivity driven by the electronics of SNAr chemistry
The reactivity of the electron-rich anionic Al(I) (‘aluminyl’) compound K 2 [(NON)Al] 2 (NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di- tert -butyl-9,9-dimethylxanthene) towards mono- and disubstituted arenes is reported. C-H activation chemistry with n -butylbenzene gives exclusively the product of activation at the arene meta position. Mechanistically, this transformation proceeds in a single step via a concerted Meisenheimer-type transition state. Selectivity is therefore based on similar electronic factors to classical S N Ar chemistry, which implies the destabilization of transition states featuring electron-donating groups in either the ortho or the para positions. In the cases of tolu…
Reversible O–H bond activation by an intramolecular frustrated Lewis pair
The interactions of the O-H bonds in alcohols, water and phenol with dimethylxanthene-derived frustrated Lewis pairs (FLPs) have been probed. Within the constraints of this backbone framework, the preference for adduct formation or O-H bond cleavage to give the corresponding zwitterion is largely determined by pKa considerations. In the case of the PPh2/B(C6F5)2 system and p-tBuC6H4OH, an equilibrium is established between the two isomeric forms which allows the thermodynamic parameters associated with zwitterion formation via O-H bond cleavage to be probed.
Reversible, room-temperature C-C bond activation of benzene by an isolable metal complex
The activation of C-C bonds is of fundamental interest in the construction of complex molecules from petrochemical feedstocks. In the case of the archetypal aromatic hydrocarbon benzene, C-C cleavage is thermodynamically disfavoured, and is brought about only by transient highly reactive species generated in situ. Here we show that the oxidative addition of the C-C bond in benzene by an isolated metal complex is not only possible, but occurs at room temperature and reversibly at a single aluminium centre in [(NON)Al]- (where NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene). Selectivity over C-H bond activation is achieved kinetically and allows for the generatio…
Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion.
The reactivity of aluminium compounds is dominated by their electron deficiency and consequent electrophilicity; these compounds are archetypal Lewis acids (electron-pair acceptors). The main industrial roles of aluminium, and classical methods of synthesizing aluminium–element bonds (for example, hydroalumination and metathesis), draw on the electron deficiency of species of the type AlR3 and AlCl31,2. Whereas aluminates, [AlR4]−, are well known, the idea of reversing polarity and using an aluminium reagent as the nucleophilic partner in bond-forming substitution reactions is unprecedented, owing to the fact that low-valent aluminium anions analogous to nitrogen-, carbon- and boron-centred…
Cooperative N–H bond activation by amido-Ge(ii) cations
N-heterocyclic carbene (NHC) and tertiary phosphine-stabilized germylium-ylidene cations, [R(L)Ge:]+, featuring tethered amido substituents at R have been synthesized via halide abstraction. Characterization in the solid state by X-ray crystallography shows these systems to be monomeric, featuring a two-coordinate C,N- or P,N-ligated germanium atom. The presence of the strongly Lewis acidic cationic germanium centre and proximal amide function allows for facile cleavage of N–H bonds in 1,2-fashion: the products resulting from reactions with carbazole feature a tethered secondary amine donor bound to a three-coordinate carbazolyl-GeII centre. In each case, addition of the components of the N…
Reversible, room-temperature C—C bond activation of benzene by an isolable metal complex
The activation of C-C bonds is of fundamental interest in the construction of complex molecules from petrochemical feedstocks. In the case of the archetypal aromatic hydrocarbon benzene, C-C cleavage is thermodynamically disfavored, and is brought about only by transient highly reactive species generated in situ. Here we show that the oxidative addition of the C-C bond in benzene by an isolated metal complex is not only possible, but occurs at room temperature and reversibly at a single aluminium center in [(NON)Al]- (where NON = 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene). Selectivity over C-H bond activation is achieved kinetically and allows for the generation…
Approaching a “naked” boryl anion: amide metathesis as a route to calcium, strontium, and potassium boryl complexes
Abstract Amide metathesis has been used to generate the first structurally characterized boryl complexes of calcium and strontium, {(Me3Si)2N}M{B(NDippCH)2}(thf)n (M=Ca, n=2; M=Sr, n=3), through the reactions of the corresponding bis(amides), M{N(SiMe3)2}2(thf)2, with (thf)2Li‐ {B(NDippCH)2}. Most notably, this approach can also be applied to the analogous potassium amide K{N(SiMe3)2}, leading to the formation of the solvent‐free borylpotassium dimer [K{B(NDippCH)2}]2, which is stable in the solid state at room temperature for extended periods (48 h). A dimeric structure has been determined crystallographically in which the K+ cations interact weakly with both the ipso‐carbons of the flanki…
CCDC 2094341: Experimental Crystal Structure Determination
Related Article: Alexa Caise, Agamemnon E. Crumpton, Petra Vasko, Jamie Hicks, Caitilín McManus, Nicholas H. Rees, Simon Aldridge|2022|Angew.Chem.,Int.Ed.|61|e202114926|doi:10.1002/anie.202114926
CCDC 1995924: Experimental Crystal Structure Determination
Related Article: Dinh Cao Huan Do, Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Simon Aldridge|2020|Dalton Trans.|49|8701|doi:10.1039/D0DT01447H
CCDC 2095879: Experimental Crystal Structure Determination
Related Article: Matthew M. D. Roy, Jamie Hicks, Petra Vasko, Andreas Heilmann, Anne-Marie Baston, Jose M. Goicoechea, Simon Aldridge|2021|Angew.Chem.,Int.Ed.|60|22301|doi:10.1002/anie.202109416
CCDC 1952095: Experimental Crystal Structure Determination
Related Article: Xueer Zhou, Petra Vasko, Jamie Hicks, M. Ángeles Fuentes, Andreas Heilmann, Eugene L. Kolychev, Simon Aldridge|2020|Dalton Trans.|49|9495|doi:10.1039/D0DT01960G
CCDC 2094344: Experimental Crystal Structure Determination
Related Article: Alexa Caise, Agamemnon E. Crumpton, Petra Vasko, Jamie Hicks, Caitilín McManus, Nicholas H. Rees, Simon Aldridge|2022|Angew.Chem.,Int.Ed.|61|e202114926|doi:10.1002/anie.202114926
CCDC 1899009: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|J.Am.Chem.Soc.|141|11000|doi:10.1021/jacs.9b05925
CCDC 1872784: Experimental Crystal Structure Determination
Related Article: Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Simon Aldridge|2019|Dalton Trans.|48|2896|doi:10.1039/C9DT00228F
CCDC 2008538: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Andreas Heilmann, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|20376|doi:10.1002/anie.202008557
CCDC 1995922: Experimental Crystal Structure Determination
Related Article: Dinh Cao Huan Do, Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Simon Aldridge|2020|Dalton Trans.|49|8701|doi:10.1039/D0DT01447H
CCDC 1854972: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Akseli Mansikkamäki, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|Nature Chemistry|11|237|doi:10.1038/s41557-018-0198-1
CCDC 1972056: Experimental Crystal Structure Determination
Related Article: Andreas Heilmann, Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|4897|doi:10.1002/anie.201916073
CCDC 1581596: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 1995923: Experimental Crystal Structure Determination
Related Article: Dinh Cao Huan Do, Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Simon Aldridge|2020|Dalton Trans.|49|8701|doi:10.1039/D0DT01447H
CCDC 1581598: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 1872783: Experimental Crystal Structure Determination
Related Article: Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Simon Aldridge|2019|Dalton Trans.|48|2896|doi:10.1039/C9DT00228F
CCDC 2005219: Experimental Crystal Structure Determination
Related Article: Xueer Zhou, Petra Vasko, Jamie Hicks, M. Ángeles Fuentes, Andreas Heilmann, Eugene L. Kolychev, Simon Aldridge|2020|Dalton Trans.|49|9495|doi:10.1039/D0DT01960G
CCDC 1972053: Experimental Crystal Structure Determination
Related Article: Andreas Heilmann, Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|4897|doi:10.1002/anie.201916073
CCDC 2094340: Experimental Crystal Structure Determination
Related Article: Alexa Caise, Agamemnon E. Crumpton, Petra Vasko, Jamie Hicks, Caitilín McManus, Nicholas H. Rees, Simon Aldridge|2022|Angew.Chem.,Int.Ed.|61|e202114926|doi:10.1002/anie.202114926
CCDC 2063254: Experimental Crystal Structure Determination
Related Article: Ying Kai Loh, Petra Vasko, Caitil��n McManus, Andreas Heilmann, William K. Myers, Simon Aldridge|2021|Nat.Commun.|12|7052|doi:10.1038/s41467-021-27104-y
CCDC 1899011: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|J.Am.Chem.Soc.|141|11000|doi:10.1021/jacs.9b05925
CCDC 1972057: Experimental Crystal Structure Determination
Related Article: Andreas Heilmann, Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|4897|doi:10.1002/anie.201916073
CCDC 1899006: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|J.Am.Chem.Soc.|141|11000|doi:10.1021/jacs.9b05925
CCDC 1943804: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Andreas Heilmann, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|Angew.Chem.,Int.Ed.|58|17265|doi:10.1002/anie.201910509
CCDC 1943806: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Andreas Heilmann, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|Angew.Chem.,Int.Ed.|58|17265|doi:10.1002/anie.201910509
CCDC 2094342: Experimental Crystal Structure Determination
Related Article: Alexa Caise, Agamemnon E. Crumpton, Petra Vasko, Jamie Hicks, Caitilín McManus, Nicholas H. Rees, Simon Aldridge|2022|Angew.Chem.,Int.Ed.|61|e202114926|doi:10.1002/anie.202114926
CCDC 1972054: Experimental Crystal Structure Determination
Related Article: Andreas Heilmann, Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|4897|doi:10.1002/anie.201916073
CCDC 2063252: Experimental Crystal Structure Determination
Related Article: Ying Kai Loh, Petra Vasko, Caitil��n McManus, Andreas Heilmann, William K. Myers, Simon Aldridge|2021|Nat.Commun.|12|7052|doi:10.1038/s41467-021-27104-y
CCDC 1972052: Experimental Crystal Structure Determination
Related Article: Andreas Heilmann, Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|4897|doi:10.1002/anie.201916073
CCDC 1952092: Experimental Crystal Structure Determination
Related Article: Xueer Zhou, Petra Vasko, Jamie Hicks, M. Ángeles Fuentes, Andreas Heilmann, Eugene L. Kolychev, Simon Aldridge|2020|Dalton Trans.|49|9495|doi:10.1039/D0DT01960G
CCDC 1952094: Experimental Crystal Structure Determination
Related Article: Xueer Zhou, Petra Vasko, Jamie Hicks, M. Ángeles Fuentes, Andreas Heilmann, Eugene L. Kolychev, Simon Aldridge|2020|Dalton Trans.|49|9495|doi:10.1039/D0DT01960G
CCDC 1943805: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Andreas Heilmann, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|Angew.Chem.,Int.Ed.|58|17265|doi:10.1002/anie.201910509
CCDC 1854971: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Akseli Mansikkamäki, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|Nature Chemistry|11|237|doi:10.1038/s41557-018-0198-1
CCDC 2095878: Experimental Crystal Structure Determination
Related Article: Matthew M. D. Roy, Jamie Hicks, Petra Vasko, Andreas Heilmann, Anne-Marie Baston, Jose M. Goicoechea, Simon Aldridge|2021|Angew.Chem.,Int.Ed.|60|22301|doi:10.1002/anie.202109416
CCDC 2095877: Experimental Crystal Structure Determination
Related Article: Matthew M. D. Roy, Jamie Hicks, Petra Vasko, Andreas Heilmann, Anne-Marie Baston, Jose M. Goicoechea, Simon Aldridge|2021|Angew.Chem.,Int.Ed.|60|22301|doi:10.1002/anie.202109416
CCDC 1581594: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 1854973: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Akseli Mansikkamäki, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|Nature Chemistry|11|237|doi:10.1038/s41557-018-0198-1
CCDC 1899010: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|J.Am.Chem.Soc.|141|11000|doi:10.1021/jacs.9b05925
CCDC 1581591: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 2063253: Experimental Crystal Structure Determination
Related Article: Ying Kai Loh, Petra Vasko, Caitil��n McManus, Andreas Heilmann, William K. Myers, Simon Aldridge|2021|Nat.Commun.|12|7052|doi:10.1038/s41467-021-27104-y
CCDC 1872782: Experimental Crystal Structure Determination
Related Article: Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Simon Aldridge|2019|Dalton Trans.|48|2896|doi:10.1039/C9DT00228F
CCDC 1943808: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Andreas Heilmann, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|Angew.Chem.,Int.Ed.|58|17265|doi:10.1002/anie.201910509
CCDC 1581600: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 2021078: Experimental Crystal Structure Determination
Related Article: Andrey V. Protchenko, Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Dragoslav Vidovic, Simon Aldridge|2021|Angew.Chem.,Int.Ed.|60|2064|doi:10.1002/anie.202011839
CCDC 1581593: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 1581592: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 1872780: Experimental Crystal Structure Determination
Related Article: Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Simon Aldridge|2019|Dalton Trans.|48|2896|doi:10.1039/C9DT00228F
CCDC 1581599: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 2005217: Experimental Crystal Structure Determination
Related Article: Xueer Zhou, Petra Vasko, Jamie Hicks, M. Ángeles Fuentes, Andreas Heilmann, Eugene L. Kolychev, Simon Aldridge|2020|Dalton Trans.|49|9495|doi:10.1039/D0DT01960G
CCDC 2021077: Experimental Crystal Structure Determination
Related Article: Andrey V. Protchenko, Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Dragoslav Vidovic, Simon Aldridge|2021|Angew.Chem.,Int.Ed.|60|2064|doi:10.1002/anie.202011839
CCDC 1952093: Experimental Crystal Structure Determination
Related Article: Xueer Zhou, Petra Vasko, Jamie Hicks, M. Ángeles Fuentes, Andreas Heilmann, Eugene L. Kolychev, Simon Aldridge|2020|Dalton Trans.|49|9495|doi:10.1039/D0DT01960G
CCDC 1952097: Experimental Crystal Structure Determination
Related Article: Xueer Zhou, Petra Vasko, Jamie Hicks, M. Ángeles Fuentes, Andreas Heilmann, Eugene L. Kolychev, Simon Aldridge|2020|Dalton Trans.|49|9495|doi:10.1039/D0DT01960G
CCDC 2094346: Experimental Crystal Structure Determination
Related Article: Alexa Caise, Agamemnon E. Crumpton, Petra Vasko, Jamie Hicks, Caitilín McManus, Nicholas H. Rees, Simon Aldridge|2022|Angew.Chem.,Int.Ed.|61|e202114926|doi:10.1002/anie.202114926
CCDC 1943807: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Andreas Heilmann, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|Angew.Chem.,Int.Ed.|58|17265|doi:10.1002/anie.201910509
CCDC 2021075: Experimental Crystal Structure Determination
Related Article: Andrey V. Protchenko, Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Dragoslav Vidovic, Simon Aldridge|2021|Angew.Chem.,Int.Ed.|60|2064|doi:10.1002/anie.202011839
CCDC 1899005: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|J.Am.Chem.Soc.|141|11000|doi:10.1021/jacs.9b05925
CCDC 2094343: Experimental Crystal Structure Determination
Related Article: Alexa Caise, Agamemnon E. Crumpton, Petra Vasko, Jamie Hicks, Caitilín McManus, Nicholas H. Rees, Simon Aldridge|2022|Angew.Chem.,Int.Ed.|61|e202114926|doi:10.1002/anie.202114926
CCDC 1581595: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 2008540: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Andreas Heilmann, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|20376|doi:10.1002/anie.202008557
CCDC 1854974: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Akseli Mansikkamäki, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|Nature Chemistry|11|237|doi:10.1038/s41557-018-0198-1
CCDC 2021076: Experimental Crystal Structure Determination
Related Article: Andrey V. Protchenko, Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Dragoslav Vidovic, Simon Aldridge|2021|Angew.Chem.,Int.Ed.|60|2064|doi:10.1002/anie.202011839
CCDC 1995925: Experimental Crystal Structure Determination
Related Article: Dinh Cao Huan Do, Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Simon Aldridge|2020|Dalton Trans.|49|8701|doi:10.1039/D0DT01447H
CCDC 1872781: Experimental Crystal Structure Determination
Related Article: Petra Vasko, M. Ángeles Fuentes, Jamie Hicks, Simon Aldridge|2019|Dalton Trans.|48|2896|doi:10.1039/C9DT00228F
CCDC 2008537: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Andreas Heilmann, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|20376|doi:10.1002/anie.202008557
CCDC 2094345: Experimental Crystal Structure Determination
Related Article: Alexa Caise, Agamemnon E. Crumpton, Petra Vasko, Jamie Hicks, Caitilín McManus, Nicholas H. Rees, Simon Aldridge|2022|Angew.Chem.,Int.Ed.|61|e202114926|doi:10.1002/anie.202114926
CCDC 1899008: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|J.Am.Chem.Soc.|141|11000|doi:10.1021/jacs.9b05925
CCDC 1972055: Experimental Crystal Structure Determination
Related Article: Andreas Heilmann, Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|4897|doi:10.1002/anie.201916073
CCDC 1581597: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2018|Nature (London)|557|92|doi:10.1038/s41586-018-0037-y
CCDC 2008536: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Andreas Heilmann, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|20376|doi:10.1002/anie.202008557
CCDC 1899007: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Jose M. Goicoechea, Simon Aldridge|2019|J.Am.Chem.Soc.|141|11000|doi:10.1021/jacs.9b05925
CCDC 2008541: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Andreas Heilmann, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|20376|doi:10.1002/anie.202008557
CCDC 2010397: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Andreas Heilmann, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|20376|doi:10.1002/anie.202008557
CCDC 1952091: Experimental Crystal Structure Determination
Related Article: Xueer Zhou, Petra Vasko, Jamie Hicks, M. Ángeles Fuentes, Andreas Heilmann, Eugene L. Kolychev, Simon Aldridge|2020|Dalton Trans.|49|9495|doi:10.1039/D0DT01960G
CCDC 2008539: Experimental Crystal Structure Determination
Related Article: Jamie Hicks, Petra Vasko, Andreas Heilmann, Jose M. Goicoechea, Simon Aldridge|2020|Angew.Chem.,Int.Ed.|59|20376|doi:10.1002/anie.202008557
CCDC 2005218: Experimental Crystal Structure Determination
Related Article: Xueer Zhou, Petra Vasko, Jamie Hicks, M. Ángeles Fuentes, Andreas Heilmann, Eugene L. Kolychev, Simon Aldridge|2020|Dalton Trans.|49|9495|doi:10.1039/D0DT01960G