0000000000278988
AUTHOR
Alessandro Milazzo
CaP-Bioglass composite coating by galvanic deposition
Orthopedic devices are increasingly used in our life to improve the health of patients after bone fractures due to accidents, aging, or sports injuries. Metallic materials (i.e. stainless steel, titanium alloys chromium alloys) are widely employed to fabricate prostheses, screws, and osteosynthesis plates. Although metals could be good mechanical properties like human bone, corrosion phenomena could occur, causing in the worst cases the failure of orthopedic implants. In addition, metal ions released around periprosthetic tissues could arise allergenic and cancerogenic effects. Nowadays, the research was focused on coating science to deal with these issues. In particular, the development of…
Morphology, Rheological and Mechanical Properties of Isotropic and Anisotropic PP/rPET/GnP Nanocomposite Samples
The effect of graphene nanoplatelets (GnPs) on the morphology, rheological, and mechanical properties of isotropic and anisotropic polypropylene (PP)/recycled polyethylene terephthalate (rPET)-based nanocomposite are reported. All the samples were prepared by melt mixing. PP/rPET and PP/rPET/GnP isotropic sheets were prepared by compression molding, whereas the anisotropic fibers were spun using a drawing module of a capillary viscometer. The results obtained showed that the viscosity of the blend is reduced by the presence of GnP due to the lubricating effect of the graphene platelets. However, the Cox–Merz rule is not respected. Compared to the PP/rPET blend, the GnP led to a slight incre…
Galvanic Deposition of Calcium Phosphate/Bioglass Composite Coating on AISI 316L
Calcium phosphate/Bioglass composite coatings on AISI 316L were investigated with regard to their potential role as a beneficial coating for orthopedic implants. These coatings were realized by the galvanic co-deposition of calcium phosphate compounds and Bioglass particles. A different amount of Bioglass 45S5 was used to study its effect on the performance of the composite coatings. The morphology and chemical composition of the coatings were investigated before and after their aging in simulated body fluid. The coatings uniformly covered the AISI 316L substrate and consisted of a brushite and hydroxyapatite mixture. Both phases were detected using X-ray diffraction and Raman spectroscopy.…