0000000000279747

AUTHOR

S. N. T. Majola

First candidates for γ vibrational bands built on the [505]11/2⁻ neutron orbital in odd-A Dy isotopes

Rotational structures have been measured using the Jurogam II and GAMMASPHERE arrays at low spin following the 155Gd(α,2n)157Dy and 148Nd(12C,5n)155Dy reactions at 25 and 65 MeV, respectively. We report high-K bands, which are conjectured to be the first candidates of a Kπ=2+γ vibrational band, built on the [505]11/2− neutron orbital, in both odd-A155,157Dy isotopes. The coupling of the first excited K=0+ states or the so-called β vibrational bands at 661 and 676 keV in 154Dy and 156Dy to the [505]11/2− orbital, to produce a Kπ=11/2− band, was not observed in both 155Dy and 157Dy, respectively. The implication of these findings on the interpretation of the first excited 0+ states in the cor…

research product

Octupole correlations in the structure of02+bands in theN=88nuclei150Sm and152Gd

Knowledge of the exact microscopic structure of the 0${}_{1}$${}^{+}$ ground state and first excited 0${}_{2}$${}^{+}$ state in ${}^{150}$Sm is required to understand the branching of double \ensuremath{\beta} decay to these states from ${}^{150}$Nd. The detailed spectroscopy of ${}^{150}$Sm and ${}^{152}$Gd has been studied using (\ensuremath{\alpha},xn) reactions and the \ensuremath{\gamma}-ray arrays AFRODITE and JUROGAM II. Consistently strong $E$1 transitions are observed between the excited ${K}^{\ensuremath{\pi}}$ $=$ 0${}_{2}$${}^{+}$ bands and the lowest negative parity bands in both nuclei. These results are discussed in terms of the possible permanent octupole deformation in the …

research product

β and γ bands in N = 88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory : Vibrations, shape coexistence, and superdeformation

A comprehensive systematic study is made for the collective β and γ bands in even-even isotopes with neutron numbers N=88 to 92 and proton numbers Z=62(Sm) to 70 (Yb). Data, including excitation energies, B(E0) and B(E2) values, and branching ratios from previously published experiments are collated with new data presented for the first time in this study. The experimental data are compared to calculations using a five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional theory (CDFT). A realistic potential in the quadrupole shape parameters V(β,γ) is determined from potential energy surfaces (PES) calculated using the CDFT. The parameters of the 5DCH are fixe…

research product