0000000000280131

AUTHOR

Hichem Barki

0000-0001-9975-2736

showing 5 related works from this author

New Geometric Constraint Solving Formulation: Application to the 3D Pentahedron

2014

Geometric Constraint Solving Problems (GCSP) are nowadays routinely investigated in geometric modeling. The 3D Pentahedron problem is a GCSP defined by the lengths of its edges and the planarity of its quadrilateral faces, yielding to an under-constrained system of twelve equations in eighteen unknowns. In this work, we focus on solving the 3D Pentahedron problem in a more robust and efficient way, through a new formulation that reduces the underlying algebraic formulation to a well-constrained system of three equations in three unknowns, and avoids at the same time the use of placement rules that resolve the under-constrained original formulation. We show that geometric constraints can be …

Constraint (information theory)Mathematical optimizationQuadrilateralComputer scienceAlgebraic numberFocus (optics)Geometric modelingParametrizationPentahedronPlanarity testing
researchProduct

Dupin cyclide blends between non-natural quadrics of revolution and concrete shape modeling applications

2014

Abstract In this work, we focus on the blending of two quadrics of revolution by two patches of Dupin cyclides. We propose an algorithm for the blending of non-natural quadrics of revolution by decomposing the blending operation into two complementary sub-blendings, each of which is a Dupin cyclide-based blending between one of the two quadrics and a circular cylinder, thus enabling the direct computation of the two Dupin cyclide patches and offering better flexibility for shape composition. Our approach uses rational quadric Bezier curves to model the relevant arcs of the principal circles of Dupin cyclides. It is quite general and we have successfully used it for the blending of several n…

Pure mathematicsQuadricDupin cyclideGeneral EngineeringTorusBézier curveGeometryComputer Graphics and Computer-Aided DesignHuman-Computer InteractionAlgebraic surfaceCatenarySurface of revolutionFocus (optics)MathematicsComputers & Graphics
researchProduct

Computation of Yvon-Villarceau circles on Dupin cyclides and construction of circular edge right triangles on tori and Dupin cyclides

2014

Ring Dupin cyclides are non-spherical algebraic surfaces of degree four that can be defined as the image by inversion of a ring torus. They are interesting in geometric modeling because: (1) they have several families of circles embedded on them: parallel, meridian, and Yvon-Villarceau circles, and (2) they are characterized by one parametric equation and two equivalent implicit ones, allowing for better flexibility and easiness of use by adopting one representation or the other, according to the best suitability for a particular application. These facts motivate the construction of circular edge triangles lying on Dupin cyclides and exhibiting the aforementioned properties. Our first contr…

ComputationRing torusDupin cyclide02 engineering and technology01 natural sciencesVillarceau circlesCombinatorics[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI]Algebraic surface0202 electrical engineering electronic engineering information engineering[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO][INFO]Computer Science [cs]0101 mathematicsParametric equationRight triangleComputingMilieux_MISCELLANEOUSMathematics[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB]010102 general mathematicsInversion020207 software engineeringTorus[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]Computational MathematicsCircular edge right triangleComputational Theory and MathematicsModeling and Simulation[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Yvon-Villarceau circleRing Dupin cyclide[INFO.INFO-DC]Computer Science [cs]/Distributed Parallel and Cluster Computing [cs.DC]Geometric modeling
researchProduct

Solving the pentahedron problem

2015

Nowadays, all geometric modelers provide some tools for specifying geometric constraints. The 3D pentahedron problem is an example of a 3D Geometric Constraint Solving Problem (GCSP), composed of six vertices, nine edges, five faces (two triangles and three quadrilaterals), and defined by the lengths of its edges and the planarity of its quadrilateral faces. This problem seems to be the simplest non-trivial problem, as the methods used to solve the Stewart platform or octahedron problem fail to solve it. The naive algebraic formulation of the pentahedron yields an under-constrained system of twelve equations in eighteen unknowns. Even if the use of placement rules transforms the pentahedron…

Mathematical optimization[ INFO ] Computer Science [cs]Interval (mathematics)[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG]Industrial and Manufacturing EngineeringDesargues’ theoremPolyhedronAl-Kashi theorem[INFO]Computer Science [cs]Algebraic numberFinite setMathematicsGeometric constraint solving problemsQuadrilateralGeometric modeling with constraintsSolution set[ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA]SolverComputer Graphics and Computer-Aided DesignPentahedronPentahedronComputer Science ApplicationsAlgebraInterval solver[ INFO.INFO-CG ] Computer Science [cs]/Computational Geometry [cs.CG][MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

Solution isolation strategies for the Bernstein polytopes-based solver

2013

The Bernstein polytopes-based solver is a new method developed to solve systems of nonlinear equations, which often occur in Geometric Constraint Solving Problems. The principle of this solver is to linearize nonlinear monomials and then to solve the resulting linear programming problems, through linear programming. However, without any strategy for the isolation of the many solutions of multiple-solution systems, this solver is slow in practice. To overcome this problem, we propose in this work, a study of several strategies for solution isolation, through the split of solution boxes into several subboxes, according to three main steps answering the questions: when, where, and how to perfo…

Constraint (information theory)Nonlinear systemMonomialMathematical optimizationLinear programmingComputer scienceBenchmark (computing)PolytopeSolverGeometric modeling2013 7th IEEE GCC Conference and Exhibition (GCC)
researchProduct