0000000000280167
AUTHOR
I. Ivan
Origin of the fast magnetization relaxation at low temperatures in HTS with strong pinning
The temperature T variation of the normalized magnetization relaxation rate S in high-temperature superconductors (HTS) with strong vortex pinning exhibits a maximum in the low-T range. This was reported for various HTS, and the origin of the faster relaxation at low T appearing in standard magnetization relaxation measurements was usually related to specific pinning properties of the investigated specimens. Since the observed behaviour seems to be characteristic to all HTS with enhanced pinning (generated by random and/or correlated disorder), we show that the S(T) maximum can be explained in terms of classic collective vortex creep. The influence of thermo-magnetic instabilities in the lo…
Magnetization relaxation in YBCO films with improved supercurrent transport properties
The relaxation of the irreversible magnetization in optimally doped YBCO films with natural and artificial pinning centres was measured in zero-field cooling conditions using SQUID magnetometry. The external magnetic field H was oriented along the c axis. An appropriate method for the determination of the characteristic vortex pinning energy from the normalized vortex-creep activation energy is discussed. This is based on the existence of a crossover elastic (collective) vortex creep at low temperatures T – plastic vortex creep at high T, caused by the T dependent macroscopic currents induced in the sample during magnetization measurements.
Analysis of magnetization relaxation in MgB2 bulk samples obtained by electric-field assisted sintering
Abstract The relaxation of the irreversible magnetization of MgB2 bulk samples obtained by electric-field assisted sintering was investigated using the SQUID magnetometry for a magnetic field H up to 50 kOe applied in zero-field-cooling conditions. We observed a crossover plastic creep at high temperatures T-elastic creep at low T, described by H ∝ T−2 in the low T range, which appears to be caused by the macroscopic currents induced in the sample during magnetization measurements. By decreasing T below this line the determined creep exponent rapidly overcomes the widely accepted theoretical values for elastic (collective) pinning. This behaviour can easily be explained through the occurren…
Inhibition of the detrimental double vortex-kink formation in thick YBa2Cu3O7films with BaZrO3nanorods
We investigated the temperature (T) variation of the normalized magnetization relaxation rate S and of the corresponding normalized vortex-creep activation energy U* = T/S for YBa2Cu3O7 films containing BaZrO3 nanorods, with the external magnetic field H oriented perpendicular to the film surface. It was found that by increasing the film thickness and using nanodot decorated substrates the high-T S(T) maximum appearing at low H is substituted by a minimum in S(T). As revealed by the analysis of the current density dependence of U*, this behaviour is due to the inhibition of vortex excitations involving double vortex-kinks and superkinks formation in the investigated thick films, owing to th…
Vortex creep crossover in YBCO/PrBCO superlattices during standard magnetization relaxation measurements
We investigated the relaxation of the irreversible magnetization in a series of 200?nm thick YBa2Cu3O7/PrBa2Cu3O7 [(YBCO)n/(PrBCO)m] superlattices, where the thickness m of the nonsuperconducting PrBCO layer (measured in unit cells) was kept to m = 4 (sufficient to decouple the superconducting YBCO layers), whereas the thickness n of the YBCO layer was varied between 2 and 20 unit cells. The analysis of standard zero-field-cooling dc magnetization relaxation data obtained in the low temperature T region with the applied magnetic field H oriented along the c axis reveals the occurrence of a crossover elastic (collective) vortex creep at low T?plastic vortex creep at high T, generated by the …
Improvement of the critical current density of spark plasma sintered MgB2by C60addition
We investigated the influence of fullerene (C60) addition on the superconducting parameters of MgB2 bulk samples obtained by spark plasma sintering (SPS). It was found that 1.5?wt% C60 addition leads to the reduction of the critical temperature by a few K, whereas the magnetically determined critical current density increases by approximately one order of magnitude in an applied magnetic field H = 70?kOe at temperature T = 10?K. This indicates substitution of B by C in C60 added MgB2 processed by SPS, contrary to some data reported in the literature obtained using conventional methods. For our relatively large specimens, the occurrence of macroscale flux jumps was observed over a wide (H, T…
On the determination of vortex creep parameters in superconductors using standard magnetization relaxation data
The relaxation of the irreversible magnetic moment m(t) in YBa2Cu3O7 (YBCO) films was investigated as a function of temperature T and the external magnetic field H along the c axis applied in zero-field cooling conditions, for the determination of vortex creep parameters. The data analysis was performed using the T and current density dependence of the normalized vortex creep activation energy, or by the fit of the m(t) data with the well known interpolation formula in the framework of the general vortex creep equation. It was found that (i) even for specimens with strong static pinning the characteristic pinning energy remains small in the low-T range, where the vortex creep appearing in s…