0000000000280231
AUTHOR
Delia Lorente-garrido
Decay Detection in Citrus Fruits Using Hyperspectral Computer Vision
The citrus industry is nowadays an important part of the Spanish agricultural sector. One of the main problems present in the citrus industry is decay caused by Penicillium digitatum and Penicillium italicum fungi. Early detection of decay produced by fungi in citrus is especially important for the citrus industry of distribution. This chapter presents a hyperspectral computer vision system and a set of machine learning techniques in order to detect decay caused by Penicillium digitatum and Penicillium italicum fungi that produce more economic losses to the sector. More specifically, the authors employ a hyperspectral system and artificial neural networks. Nowadays, inspection and removal o…
Machine Learning for Modeling the Biomechanical Behavior of Human Soft Tissue
An accurate modeling of the biomechanical properties of human soft tissue is crucial in many clinical applications, such as, radiotherapy administration or surgery. The finite element method (FEM) is the usual choice to carry out such modeling due to its high accuracy. However, FEM is computationally very costly, and hence, its application in real-time or even off-line with short delays are still challenges to overcome. This paper proposes a framework based on Machine Learning to learn FEM modeling, thus having a tool able to yield results that may be sufficiently fast for clinical applications. In particular, the use of ensembles of Decision Trees has shown its suitability in modeling the …