Unravelling the kinetics and molecular mechanism of the degenerate Cope rearrangement of bullvalene
The kinetics and molecular mechanism of the gas phase degenerate Cope rearrangement (DCR) of bullvalene have been investigated by applying quantum mechanical calculations. Highly accurate energies (CBS-QB3 and CBS-APNO) and RRKM calculations were employed to study the kinetics and ‘fall-off’ behavior. It was found that the DCR of bullvalene (C3v) occurs through a bishomoaromatic transition structure (C2v) with an energy barrier of ∼49 kJ mol−1. The calculated activation energy and enthalpy were in good agreement with the available values in the literature, but lower than those of common Cope rearrangement; this result is related to the high stabilization energy due to the interaction of the…