0000000000280253
AUTHOR
Philipp Mielke
Processing of rock core microtomography images: Using seven different machine learning algorithms
The abilities of machine learning algorithms to process X-ray microtomographic rock images were determined. The study focused on the use of unsupervised, supervised, and ensemble clustering techniques, to segment X-ray computer microtomography rock images and to estimate the pore spaces and pore size diameters in the rocks. The unsupervised k-means technique gave the fastest processing time and the supervised least squares support vector machine technique gave the slowest processing time. Multiphase assemblages of solid phases (minerals and finely grained minerals) and the pore phase were found on visual inspection of the images. In general, the accuracy in terms of porosity values and pore…
Comparison of Micro X-ray Computer Tomography Image Segmentation Methods: Artificial Neural Networks Versus Least Square Support Vector Machine
Micro X-ray computer tomography (XCT) is a powerful non-destructive method for obtaining information about rock structures and mineralogy. A new methodology to obtain porosity from 2D XCT digital images using artificial neural network and least square support vector machine is demonstrated following these steps: the XCT image was first preprocessed, thereafter clustering algorithms such as K-means, Fuzzy c-means and self-organized maps was used for image segmentation. Then artificial neural network was applied for image classification. For comparison, least square support vector machine approach was used for classification labeling of the scan images. The methodology shows how artificial ne…