0000000000280471

AUTHOR

K. R. Arun

A Second Order Accurate Kinetic Relaxation Scheme for Inviscid Compressible Flows

In this paper we present a kinetic relaxation scheme for the Euler equations of gas dynamics in one space dimension. The method is easily applicable to solve any complex system of conservation laws. The numerical scheme is based on a relaxation approximation for conservation laws viewed as a discrete velocity model of the Boltzmann equation of kinetic theory. The discrete kinetic equation is solved by a splitting method consisting of a convection phase and a collision phase. The convection phase involves only the solution of linear transport equations and the collision phase instantaneously relaxes the distribution function to an equilibrium distribution. We prove that the first order accur…

research product

Numerical Front Propagation Using Kinematical Conservation Laws

We use the newly formulated three-dimensional (3-D) kinematical conservation laws (KCL) to study the propagation of a nonlinear wavefront in a polytropic gas in a uniform state at rest. The 3-D KCL forms an under-determined system of six conservation laws with three involutive constraints, to which we add the energy conservation equation of a weakly nonlinear ray theory. The resulting system of seven conservation laws is only weakly hyperbolic and therefore poses a real challenge in the numerical approximation. We implement a central finite volume scheme with a constrained transport technique for the numerical solution of the system of conservation laws. The results of a numerical experimen…

research product