0000000000280551
AUTHOR
Philippe Gautheron
Some remarks concerning Nambu mechanics
The structure of Nambu-Poisson brackets is studied and we establish that any Nambu tensor is decomposable. We show that every Nambu-Poisson manifold admits a local foliation by canonical Nambu-Poisson manifolds. Finally, a cohomology for Nambu (Lie) algebras which is adapted to the study of formal deformations of Nambu structures is introduced.
Simple Facts Concerning Nambu Algebras
A class of substitution equations arising in the extension of Jacobi identity for $n$-gebras is studied and solved. Graded bracket and cohomology adapted to the study of formal deformations are presented. New identities in the case of Nambu-Lie algebras are proved. The triviality in the Gerstenhaber sense of certain deformed n-skew-symmetric brackets, satisfying the Leibniz rule with respect to a star-product, is shown for n≥ 3.