0000000000280767

AUTHOR

Mitsuru Itoh

Local structure studies of SrTi16O3and SrTi18O3

In this work we report on the local structure of Ti in SrTi 16 O3 (STO16) and SrTi 18 O3 (STO18) investigated in the low temperature range (6‐300K) by extended x-ray absorption fine structure and x-ray absorption near edge structure (XANES) spectroscopy at Ti K-edge and by optical second harmonic generation (SHG). By comparing XANES of STO16 and STO18 we have identified the isotopic effect which produces at T < 100K a noticeable difference in the measured mean square relative displacements (MSRD) of Ti‐O1 bonds: while STO16 follow the expected Einstein-like behavior, for STO18 we have measured an increase of MSRD values with decreasing temperature. This is an indication of an increasing off…

research product

Local Structure Studies of Ti for SrTi16O3 and SrTi18O3 by Advanced X-ray Absorption Spectroscopy Data Analysis

Strontium titanate is a model quantum paraelectric in which in the region of dominating quantum statistics the ferroelectric instability is inhibited due to nearly complete compensation of the harmonic contribution into ferroelectric soft mode frequency by the zero-point motion contribution. The enhancement of atomic masses by the substitution of 18O for 16O decreases the zero-point atomic motion and low-T ferroelectricity in SrTi18O3 is realized. In this study we report on the local structure of Ti in SrTi16O3 and SrTi18O3 by Ti K-edge extended x-ray absorption fine structure measurements in temperature range 6 – 300 K.

research product

Local dynamics and phase transition in quantum paraelectric SrTiO3 studied by Ti K-edge x-ray absorption spectroscopy

Strontium titanate is a model quantum paraelectric in which, in the region of dominating quantum statistics, the ferroelectric instability is inhibited due to nearly complete compensation of the harmonic contribution into ferroelectric soft mode frequency by the zero- point motion contribution. The enhancement of atomic masses by the substitution of 16 O with 18O decreases the zero-point atomic motion, and low-T ferroelectricity in SrTi18O3 is realized. In this study we report on the local structure of Ti in SrTi16O3 and SrTi18O3 investigated by Extended X-ray Absorption Fine Structure measurements in the temperature range 6 - 300 K.

research product