0000000000281011

AUTHOR

Juri Poutanen

showing 8 related works from this author

INTEGRAL and RXTE observations of accreting millisecond pulsar IGR J00291+5934 in outburst

2005

Simultaneous observations of the accretion-powered millisecond pulsar IGR J00291+5934 by International Gamma-Ray Astrophysics Laboratory and Rossi X-ray Timing Explorer during the 2004 December outburst are analysed. The average spectrum is well described by thermal Comptonization with an electron temperature of 50 keV and Thomson optical depth tau_T ~ 1 in a slab geometry. The spectral shape is almost constant during the outburst. We detect a spin-up of the pulsar with nudot=8.4x10E-13 Hz/s. The ISGRI data reveal the pulsation of X-rays at a period of 1.67 milliseconds up to ~150 keV. The pulsed fraction is shown to increase from 6 per cent at 6 keV to 12--20 per cent at 100 keV. This is n…

Spectral shape analysisAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesHot spot (veterinary medicine)Astrophysicsaccretion accretion discs binaries: close stars: individual: IGR J00291+5934 stars: neutron X-rays: binariesAstrophysics01 natural sciences7. Clean energy[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]symbols.namesakestars: neutronPulsaraccretionMillisecond pulsar0103 physical sciencesOptical depth (astrophysics)010306 general physics010303 astronomy & astrophysicsPhysicsMillisecondbinaries: close[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Astrophysics (astro-ph)Astronomy and Astrophysicsaccretion discspulsars: individual (IGR J00291+5934)13. Climate actionSpace and Planetary SciencesymbolsElectron temperatureDoppler effectX-ray: binaries
researchProduct

Timing Analysis of the 2022 Outburst of the Accreting Millisecond X-Ray Pulsar SAX J1808.4-3658: Hints of an Orbital Shrinking

2022

We present a pulse timing analysis of NICER observations of the accreting millisecond X-ray pulsar SAX J1808.4$-$3658 during the outburst that started on 2022 August 19. Similar to previous outbursts, after decaying from a peak luminosity of $\simeq 1\times10^{36} \, \mathrm{erg \, s^{-1}}$ in about a week, the pulsar entered in a $\sim 1$ month-long reflaring stage. Comparison of the average pulsar spin frequency during the outburst with those previously measured confirmed the long-term spin derivative of $\dot{\nu}_{\textrm{SD}}=-(1.15\pm0.06)\times 10^{-15} \, \mathrm{Hz\,s^{-1}}$, compatible with the spin-down torque of a $\approx 10^{26} \, \mathrm{G \, cm^3}$ rotating magnetic dipole.…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceFOS: Physical sciencesMillisecond pulsarAstronomy and AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaStellar accretion diskNeutron starsThe Astrophysical Journal Letters
researchProduct

The INTEGRAL view of the pulsating hard X-ray sky: from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars

2020

arXiv:2012.01346v1

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsMagnetarQuantitative Biology::OtherComputer Science::Digital Libraries01 natural sciencesNeutron starsX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesMagnetarsAccretion disks magnetars neutron stars pulsar X-rays:binaries X-rays:burstseducationX-rays: bursts010303 astronomy & astrophysicsPulsarsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_study010308 nuclear & particles physicsCrab PulsarAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsAccretion (astrophysics)Neutron starSpace and Planetary ScienceAccretion disksSpin-upAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009

2017

Astronomy and astrophysics 603, A31 (2017). doi:10.1051/0004-6361/201629540

extragalactic background lightmultiwavelength observationsAstrophysics::High Energy Astrophysical Phenomenabl-lacertae objectsGalaxies: BL Lacertae objects: individual: Markarian 501 ; Methods: data analysis ; observational ; Polarizationspectral energy-distributionFluxFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionindividual: Markarian 501 [BL Lacertae objects]lawCoincident0103 physical sciencesddc:530MAGIC (telescope)crab-nebulaBlazardata analysis [Methods]010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)tev blazars010308 nuclear & particles physicsstochastic accelerationtelescope observationsInstitut für Physik und AstronomieAstronomy and AstrophysicsAstronomy and Astrophysicgamma-ray emissionmethods: data analysis520BL Lacertae objects: individual: Markarian 501; Methods: data analysisSynchrotrondata analysi [Methods]BL Lacertae objects: individual: Markarian 501; Methods: data analysis; Astronomy and Astrophysics; Space and Planetary ScienceBL Lacertae objects: individual: Markarian 501x-raySpace and Planetary Scienceddc:520ElectrónicaFísica nuclearElectricidadDegeneracy (mathematics)Astrophysics - High Energy Astrophysical PhenomenaFlareBL Lac object
researchProduct

The Large Observatory For x-ray Timing

2014

The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final down-selection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supra-nuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m 2 effective area, 2-30 keV, 240 eV spectral resolution, 1 deg collimated field of view) and a WideFi…

x-ray and γ-ray instrumentationcompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringVisionX-ray timingObservatoriesField of view01 natural sciences7. Clean energyneutron starsObservatory010303 astronomy & astrophysicsPhysicsEquipment and servicesApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsSteradian[ SDU.ASTR.IM ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Computer Science Applications1707 Computer Vision and Pattern RecognitionX-ray detectorsCondensed Matter Physicscompact objectsX-ray spectroscopyAstrophysics - Instrumentation and Methods for AstrophysicsX-ray detector[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cosmic VisionSpectral resolutionmicrochannel platesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNOmicrochannel platecompact objects; microchannel plates; X-ray detectors; X-ray imaging; X-ray spectroscopy; X-ray timing; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia e AstrofisicaX-rayscompact object0103 physical sciencesElectronicOptical and Magnetic MaterialsElectrical and Electronic EngineeringSpectral resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)dense hadronic matterSensors010308 nuclear & particles physicsX-ray imagingAstronomyAccretion (astrophysics)[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutron star13. Climate actionx-ray and γ-ray instrumentation; neutron stars; dense hadronic matter[ PHYS.ASTR.IM ] Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Gamma-ray burstastro-ph.IM
researchProduct

First Multi-wavelength Campaign on the Gamma-ray-loud Active Galaxy IC 310

2017

The extragalactic VHE gamma-ray sky is rich in blazars. These are jetted active galactic nuclei viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are known so far to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. We report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10 deg - 20 deg. The multi-instrument campaign was conducted between 2012 Nov. and 2013 Jan., and involved observations with MAG…

Active galactic nucleusAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesEnergy fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxies: active; Galaxies: individual: IC 310; Gamma rays: galaxies; Astronomy and Astrophysics; Space and Planetary Science01 natural scienceslaw.inventionlawGalaxies: individual: IC 3100103 physical sciencesindividual: IC 310 [galaxies]Blazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsgalaxie [Gamma rays]010308 nuclear & particles physicsGamma rayAstronomy and AstrophysicsGalaxies: activeAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesSynchrotrongamma rays: galaxies ; galaxies: active ; individual (IC 310)Gamma rays: galaxiesSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)active [galaxies]galaxies [gamma rays]ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGSpectral energy distributionddc:520Astrophysics - High Energy Astrophysical PhenomenaFermi Gamma-ray Space TelescopeFlare
researchProduct

Black hole lightning due to particle acceleration at subhorizon scales

2015

Supermassive black holes with masses of millions to billions of solar masses are commonly found in the centers of galaxies. Astronomers seek to image jet formation using radio interferometry, but still suffer from insufficient angular resolution. An alternative method to resolve small structures is to measure the time variability of their emission. Here, we report on gamma-ray observations of the radio galaxy IC 310 obtained with the MAGIC telescopes revealing variability with doubling time scales faster than 4.8 min. Causality constrains the size of the emission region to be smaller than 20\% of the gravitational radius of its central black hole. We suggest that the emission is associated …

Black HolesRadio galaxyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsVery High Energy Gamma AstronomyBlack Holes Very High Energy Gamma Astronomy Active Galactic NucleiX-shaped radio galaxysupermassive black hole ; jet formation ; IC 310 ; MAGIC telescopesAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HESupermassive black holeta115MultidisciplinaryPhysicsActive Galactic NucleiAstronomy and AstrophysicsGalaxyIntermediate-mass black holeStellar black holeElectrónicaFísica nuclearddc:500Spin-flipElectricidadAstrophysics - High Energy Astrophysical PhenomenaSchwarzschild radius
researchProduct

Dense matter with eXTP

2019

In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics o…

GAMMA-RAY PULSARSdense matterAstrophysics::High Energy Astrophysical PhenomenaPolarimetryGeneral Physics and AstronomyFOS: Physical sciencesAstrophysicsNeutronBRIGHTNESS OSCILLATIONS7. Clean energy01 natural sciencesINNER ACCRETION DISKSSpectral lineX-raydense matter; equation of state; neutron; X-rays; Physics and Astronomy (all)Physics and Astronomy (all)Equacions d'estatneutronPulsar0103 physical sciencesMILLISECOND PULSARSX-raysNEUTRON-STARRADIUS CONSTRAINTS010306 general physics010303 astronomy & astrophysicsRELATIVISTIC IRON LINEequation of statePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)LIGHT CURVESNeutronsEquation of stateQUASI-PERIODIC OSCILLATIONSX-RaysStarke Wechselwirkung und exotische Kerne – Abteilung BlaumAstrophysics::Instrumentation and Methods for AstrophysicsEQUATION-OF-STATEAccretion (astrophysics)Neutron star:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]Raigs XAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaDense matterDense matter
researchProduct