0000000000281153

AUTHOR

R.c. Surdeanu

Relation between microstructure and transport properties of epitaxial YBa2Cu3O7-d thin films.

Abstract In order to understand the origin of the high critical current densities observed in thin superconducting films compared to single crystals we measured in several epitaxial YBa 2 Cu 3 O 7−δ thin films the magnetic field and temperature dependence of the superconducting current density j s and the dynamical relaxation rate Q ≡ d ln j s / d ln( d B/ dt ). For all samples we found that (i) the superconducting current density j s is independent of magnetic field up to a certain field B Φ . The value of this field, which is sample dependent, decreases with increasing temperature; (ii) for fields B>B Φ , the superconducting current density falls off as B −1/2 over several decades; (iii) …

research product

Influence of micro-structure in the low temperature critical currents of YBa2Cu3O7?? thin films

Epitaxial YBa2Cu3O7−δ films nucleate in c-axis oriented single-crystalline islands. The surface of the single-crystalline SrTiO3 substrates exhibit steps of one third of the YBa2Cu3O7−δ c-axis. These steps generate a mismatch in the island boundaries between the CuO2 superconducting blocks. We show that these defect regions are strong candidates for being the pinning centers responsible for the large critical currents observed in Laser Ablated and Sputtered thin films.

research product

Critical currents and micro-structure in YBa2Cu3O7−δ thin films

In an attempt to clarify the origin of the large critical current densitiesJ c observed in Laser Ablated and Sputtered YBa2Cu3O7−δ (YBCO) thin films, we make a systematic study of the low temperatureJ c in samples carefully analysed using STM and AFM.J c (B) is determined from torque-magnetometry performed in ring-patterned thin films. Epitaxial YBCO films nucleate in c-axis oriented single-crystalline islands with sizes ranging between 200 and 700 nm. We show thatJ c can be mainly explained by vortex pinning localised in the island boundaries.

research product