0000000000281195
AUTHOR
Juan C. Migliore
Multiprojective spaces and the arithmetically Cohen-Macaulay property
AbstractIn this paper we study the arithmetically Cohen-Macaulay (ACM) property for sets of points in multiprojective spaces. Most of what is known is for ℙ1× ℙ1and, more recently, in (ℙ1)r. In ℙ1× ℙ1the so called inclusion property characterises the ACM property. We extend the definition in any multiprojective space and we prove that the inclusion property implies the ACM property in ℙm× ℙn. In such an ambient space it is equivalent to the so-called (⋆)-property. Moreover, we start an investigation of the ACM property in ℙ1× ℙn. We give a new construction that highlights how different the behavior of the ACM property is in this setting.
On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces
We study the arithmetically Cohen-Macaulay (ACM) property for finite sets of points in multiprojective spaces, especially ( P 1 ) n (\mathbb P^1)^n . A combinatorial characterization, the ( ⋆ ) (\star ) -property, is known in P 1 × P 1 \mathbb P^1 \times \mathbb P^1 . We propose a combinatorial property, ( ⋆ s ) (\star _s) with 2 ≤ s ≤ n 2\leq s\leq n , that directly generalizes the ( ⋆ ) (\star ) -property to ( P 1 ) n (\mathbb P^1)^n for larger n n . We show that X X is ACM if and only if it satisfies the ( ⋆ n ) (\star _n) -property. The main tool for several of our results is an extension to the multiprojective setting of certain liaison methods in projective space.
Expecting the unexpected: Quantifying the persistence of unexpected hypersurfaces
If $X \subset \mathbb P^n$ is a reduced subscheme, we say that $X$ admits an unexpected hypersurface of degree $t$ for multiplicity $m$ if the imposition of having multiplicity $m$ at a general point $P$ fails to impose the expected number of conditions on the linear system of hypersurfaces of degree $t$ containing $X$. Conditions which either guarantee the occurrence of unexpected hypersurfaces, or which ensure that they cannot occur, are not well understand. We introduce new methods for studying unexpectedness, such as the use of generic initial ideals and partial elimination ideals to clarify when it can and when it cannot occur. We also exhibit algebraic and geometric properties of $X$ …