0000000000281240

AUTHOR

Andreas Jüttner

showing 10 related works from this author

Study of the anomalous magnetic moment of the muon computed from the Adler function

2014

We compute the Adler function on the lattice from vacuum polarization data with twisted boundary conditions using numerical derivatives. The study is based on CLS ensembles with two flavours of $O(a)$ improved Wilson fermions. We extrapolate the lattice data for the Adler function to the continuum limit and to the physical pion mass and analyze its dependence on the momentum transfer. We discuss the application of this method to the extraction of the $u,d$ contribution to $a_\mu^{\mathrm{HLO}}$.

PhysicsMuonAnomalous magnetic dipole moment010308 nuclear & particles physicsHigh Energy Physics::LatticeMomentum transferHigh Energy Physics - Lattice (hep-lat)FOS: Physical scienceshep-latFermion01 natural sciencesPionHigh Energy Physics - LatticeQuantum electrodynamicsLattice (order)0103 physical sciencesBoundary value problemVacuum polarization010306 general physicsPoS(LATTICE2014)162
researchProduct

Lattice calculations of the leading hadronic contribution to g-2

2012

We report on our ongoing project to calculate the leading hadronic contribution to the anomalous magnetic moment of the muon aHLO μ using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. In this study, we changed the vacuum polarisation tensor to a combination of local and point-split currents which significantly reduces the numerical effort. Partially twisted boundary conditions allow us to improve the momentum resolution of the vacuum polarisation tensor and therefore the determination of the leading hadronic contribution to (g− 2)μ . We also extended the range of ensembles to include a pion mass below 200MeV which allows us to check the non-trivial chiral behav…

Quantum chromodynamicsPhysicsParticle physicsPionMuonAnomalous magnetic dipole momentHigh Energy Physics::LatticeHadronLattice field theoryFermionLattice QCDProceedings of The 30th International Symposium on Lattice Field Theory — PoS(Lattice 2012)
researchProduct

Flavor physics in the quark sector

2010

218 páginas, 106 figuras, 89 tablas.-- arXiv:0907.5386v2.-- Report of the CKM workshop, Rome 9-13th Sep. 2008.-- et al.

QuarkParticle physicsKobayashi-Maskawa MatrixMesonField (physics)Rare Kaon DecaysHigh Energy Physics::LatticeFlavourGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix element01 natural sciencesDirect Cp-ViolationStandard ModelTo-Leading OrderHigh Energy Physics - Phenomenology (hep-ph)Chiral Perturbation-Theory/dk/atira/pure/subjectarea/asjc/31000103 physical sciences010306 general physicsFlavorParticle Physics - PhenomenologyPhysics010308 nuclear & particles physics12.15.Hh Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementsHigh Energy Physics::PhenomenologyELEMENTARY PARTICLE PHYSICSFísicahep-ph13.20.Eb Decays of K mesonsQuantum numberLarge Tan-BetaSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Phenomenology13.20.He Decays of bottom mesonsB MESON[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Effective-Field-TheoryCP violationB-Meson DecaysUniversal Extra DimensionsHigh Energy Physics::ExperimentCP VIOLATIONRooted Staggered FermionsCharmed mesons (|C|>0 B=0)
researchProduct

Pion form factor from RBC and UKQCD

2010

Andreas Juttner, P.A. Boyle, C. Kelly, C. Maynard, J.M. Zanotti, J.M. Flynn, H.P. de Lima, C.T. Sachrajda

Form factor (design)PionChemistryMathematical physics
researchProduct

Nucleon axial charge in lattice QCD with controlled errors

2012

We report on our calculation of the nucleon axial charge ${g}_{\mathrm{A}}$ in QCD with two flavors of dynamical quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions from excited states to three-point correlation functions. The use of summed operator insertions allows for a much better control over such contamination. After performing a chiral extrapolation to the physical pion mass, we find ${g}_{\mathrm{A}}=1.223\ifmmode\pm\else\textpm\fi{}0.063(\mathrm{stat}{)}_{\ensuremath{-}0.060}^{+0.035}(\mathrm{syst})$, in good agreement with the experimental value.

PhysicsQuantum chromodynamicsQuarkNuclear and High Energy PhysicsParticle physicsPionHigh Energy Physics::LatticeLattice field theoryHigh Energy Physics::ExperimentCharge (physics)Lattice QCDCorrelation function (quantum field theory)NucleonPhysical Review D
researchProduct

Lattice Determination of the Anomalous Magnetic Moment of the Muon

2011

We compute the leading hadronic contribution to the anomalous magnetic moment of the muon a_mu^HLO using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. By applying partially twisted boundary conditions we are able to improve the momentum resolution of the vacuum polarisation, an important ingredient for the determination of the leading hadronic contribution. We check systematic uncertainties by studying several ensembles, which allows us to discuss finite size effects and lattice artefacts. The chiral behavior of a_mu^HLO turns out to be non-trivial, especially for small pion masses.

PhysicsParticle physicsMuonAnomalous magnetic dipole momentHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)HadronFOS: Physical sciencesParticle Physics - LatticeFermionPionHigh Energy Physics - LatticeLattice (order)High Energy Physics::ExperimentBoundary value problem
researchProduct

Heavy-strange meson decay constants in the continuum limit of quenched QCD

2007

We improve a previous quenched result for heavy-light pseudoscalar meson decay constants with the light quark taken to be the strange quark. A finer lattice resolution (a ~ 0.05 fm) in the continuum limit extrapolation of the data computed in the static approximation is included. We also give further details concerning the techniques used in order to keep the statistical and systematic errors at large lattice sizes L/a under control. Our final result, obtained by combining these data with determinations of the decay constant for pseudoscalar mesons around the D_s, follows nicely the qualitative expectation of the 1/m-expansion with a (relative) 1/m-term of about -0.5 GeV/m_PS. At the physic…

Quantum chromodynamicsQuarkPhysicsNuclear and High Energy PhysicsStrange quarkParticle physicsMesonHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Nuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesQuenched approximationParticle Physics - LatticeLattice QCDPseudoscalar mesonPseudoscalarHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Latticeddc:530High Energy Physics::Experiment
researchProduct

Kl3Semileptonic Form Factor from (2+1)-Flavor Lattice QCD

2008

We present the first results for the ${K}_{l3}$ form factor from simulations with $2+1$ flavors of dynamical domain wall quarks. Combining our result, namely, ${f}_{+}(0)=0.964(5)$ with the latest experimental results for ${K}_{l3}$ decays leads to $|{V}_{us}|=0.2249(14)$, reducing the uncertaintity in this important parameter. For the $O({p}^{6})$ term in the chiral expansion we obtain $\ensuremath{\Delta}f=\ensuremath{-}0.013(5)$.

QuarkPhysicsQuantum chromodynamicsParticle physics010308 nuclear & particles physicsCabibbo–Kobayashi–Maskawa matrixLattice field theoryForm factor (quantum field theory)General Physics and AstronomyLattice QCD01 natural sciencesDomain wall (magnetism)Lattice gauge theory0103 physical sciences010306 general physicsPhysical Review Letters
researchProduct

Kl3form factor withNf= 2 +1 dynamical domain wall fermions

2008

We present the latest results from the UKQCD/RBC collaborations for the Kl3 form factor from simulations with 2 + 1 flavours of dynamical domain wall quarks. Simulations are performed on lattices with two different volumes and four values of the light quark mass, allowing for an extrapolation to the chiral limit. The analysis includes a thorough investigation into the sources of systematic error in our fits. After interpolating to zero momentum transfer, we obtain f+(0) = 0.964(5) (or ?f = -0.013(5)) which, when combined with the latest experimental results for Kl3 decays, leads to |Vus| = 0.2249(14).

QuarkPhysicsHistoryParticle physicsCabibbo–Kobayashi–Maskawa matrixHigh Energy Physics::LatticeMomentum transferLattice field theoryExtrapolationForm factor (quantum field theory)FermionComputer Science ApplicationsEducationDomain wall (string theory)Journal of Physics: Conference Series
researchProduct

Hadronic contribution to the lepton anomalous magnetic moment and pion form factor in lattice QCD

2012

Abstract The Mainz lattice QCD group is currently carrying out simulations of lattice QCD with the aim of making predictions for a wide range of phenomenologically relevant Standard Model properties. Here we present progress in understanding and controlling systematic effects in the computation of the pion vector form factor and the leading hadronic contribution to the lepton anomalous magnetic moment.

PhysicsNuclear and High Energy PhysicsParticle physicsAnomalous magnetic dipole moment010308 nuclear & particles physicsHigh Energy Physics::LatticeComputationNuclear TheoryHigh Energy Physics::PhenomenologyHadronForm factor (quantum field theory)Lattice QCD01 natural sciencesNuclear physicsStandard Model (mathematical formulation)Pion0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsLeptonProgress in Particle and Nuclear Physics
researchProduct