0000000000281505

AUTHOR

David Brandt

Sponge biosilica formation involves syneresis following polycondensation in vivo.

Syneresis is a process observed during the maturation/aging of silica gels obtained by sol-gel synthesis that results in shrinkage and expulsion of water due to a rearrangement and increase in the number of bridging siloxane bonds. Here we describe how the process of biosilica deposition during spicule ("biosilica" skeleton of the siliceous sponges) formation involves a phase of syneresis that occurs after the enzyme-mediated polycondensation reaction. Primmorphs from the demosponge Suberites domuncula were used to study syneresis and the inhibition of this mechanism. We showed by scanning electron microscopy that spicules added to primmorphs that have been incubated with manganese sulfate …

research product

Histochemical and electron microscopic analysis of spiculogenesis in the demosponge Suberites domuncula.

The skeleton of demosponges is built of spicules consisting of biosilica. Using the primmorph system from Suberites domuncula, we demonstrate that silicatein, the biosilica-synthesizing enzyme, and silicase, the catabolic enzyme, are colocalized at the surface of growing spicules as well as in the axial filament located in the axial canal. It is assumed that these two enzymes are responsible for the deposition of biosilica. In search of additional potential structural molecules that might guide the mineralization process during spiculogenesis to species-specific spicules, electron microscopic studies with antibodies against galectin and silicatein were performed. These studies showed that …

research product

Silicatein: Nanobiotechnological and Biomedical Applications

Silica-based materials are used in many high-tech products including microelectronics, optoelectronics, and catalysts. Siliceous sponges (Demospongiae and Hexactinellida) are unique in their ability to synthesize silica enzymatically. We have cloned the silica-forming enzymes, silicateins, from both demosponges (marine and freshwater sponges) and hexactinellid sponges. The recombinant enzymes allow the synthesis of silica under environmentally benign ambient conditions, while the technical (chemical) production of silica commonly requires high temperatures and pressures, and extremes of pH. Silicateins can be used for the fabrication of highly-ordered inorganic–organic composite materials w…

research product

Dissection of the structure-forming activity from the structure-guiding activity of silicatein: a biomimetic molecular approach to print optical fibers

Silicateins, a group of proteins forming the proteinaceous axial filaments of the inorganic biosilica spicules of the siliceous sponges, are unique in their dual function to exhibit both structure-guiding (providing the structural platform for the biosilica product) and structure-forming activities (enzymatic function: biosilica synthesis from ortho-silicate). The primary translation product of the silicatein gene comprises a signal peptide, a pro-peptide and, separated by an autocatalytic cleavage site glutamine/aspartic acid [Q/D], the sequence of the mature silicatein protein. In order to dissect the biocatalytic, structure-forming activity of silicatein from its structure-guiding functi…

research product

Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica,

Abstract The siliceous spicules of sponges (Porifera) show great variations of sizes, shapes and forms; they constitute the chief supporting framework of these animals; these skeletal elements are synthesized enzymatically by silicatein. Each sponge species synthesizes at least two silicateins, which are termed − α and − β . In the present study, using the demosponge Suberites domuncula , we studied if the silicateins of the axial filament contribute to the shape formation of the spicules. For these experiments native silicateins have been isolated by a new Tris/glycerol extraction procedure. Silicateins isolated by this procedure are monomeric (24 kDa), but readily form dimers through non-…

research product

Toll-like receptors are part of the innate immune defense system of sponges (demospongiae: Porifera).

During evolution and with the emergence of multicellular animals, the need arose to ward off foreign organisms that threaten the integrity of the animal body. Among many different receptors that participate in the recognition of microbial invaders, toll-like receptors (TLRs) play an essential role in mediating the innate immune response. After binding distinct microbial components, TLRs activate intracellular signaling cascades that result in an induced expression of diverse antimicrobial molecules. Because sponges (phylum Porifera) are filter feeders, they are abundantly exposed to microorganisms that represent a potential threat. Here, we describe the identification, cloning, and deduced …

research product

Axial growth of hexactinellid spicules: Formation of cone-like structural units in the giant basal spicules of the hexactinellid Monorhaphis

The glass sponge Monorhaphis chuni (Porifera: Hexactinellida) forms the largest bio-silica structures on Earth; their giant basal spicules reach sizes of up to 3 m and diameters of 8.5 mm. Previously, it had been shown that the thickness growth proceeds by appositional layering of individual lamellae; however, the mechanism for the longitudinal growth remained unstudied. Now we show, that the surface of the spicules have towards the tip serrated relief structures that are consistent in size and form with the protrusions on the surface of the spicules. These protrusions fit into the collagen net that surrounds the spicules. The widths of the individual lamellae do not show a pronounced size …

research product

Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase)

Siliceous sponges can synthesize poly(silicate) for their spicules enzymatically using silicatein. We found that silicatein exists in silica-filled cell organelles (silicasomes) that transport the enzyme to the spicules. We show for the first time that recombinant silicatein acts as a silica polymerase and also as a silica esterase. The enzymatic polymerization/polycondensation of silicic acid follows a distinct course. In addition, we show that silicatein cleaves the ester-like bond in bis(p-aminophenoxy)-dimethylsilane. Enzymatic parameters for silica esterase activity are given. The reaction is completely blocked by sodium hexafluorosilicate and E-64. We consider that the dual function o…

research product

Strombine dehydrogenase in the demosponge Suberites domuncula: Characterization and kinetic properties of the enzyme crucial for anaerobic metabolism

Previously, the cDNA and the respective gene for a presumed tauropine dehydrogenase (TaDH) from Suberites domuncula (GenBank accession nos. AM712888, AM712889) had been annotated. The conclusion that the sequences encode a TaDH had been inferred from the 68% identity with the TaDH protein from the marine demosponge Halichondria japonica. However, subsequent enzymatic assays shown here indicate that the presumed S. domuncula opine dehydrogenase is in fact a strombine dehydrogenase (StDH). The enzyme StDH is highly specific for glycine and is inhibited by an excess of the substrate pyruvate. Besides kinetic data, we report in this study also on the predicted tertiary and quaternary structure …

research product

Selenium affects biosilica formation in the demosponge Suberites domuncula

Selenium is a trace element found in freshwater and the marine environment. We show that it plays a major role in spicule formation in the demosponge Suberites domuncula. If added to primmorphs, an in vitro sponge cell culture system, it stimulates the formation of siliceous spicules. Using differential display of transcripts, we demonstrate that, after a 72-h exposure of primmorphs to selenium, two genes are up-regulated; one codes for selenoprotein M and the other for a novel spicule-associated protein. The deduced protein sequence of selenoprotein M (14 kDa) shows characteristic features of metazoan selenoproteins. The spicule-associated protein (26 kDa) comprises six characteristic repe…

research product

Mitochondrial genome of Suberites domuncula: palindromes and inverted repeats are abundant in non-coding regions.

The 26,300-nucleotide sequence of the mitochondrial DNA (mtDNA) molecule of the demosponge Suberites domuncula (Olivi, 1792), the largest in size yet found in Porifera, has been determined. We describe the second hadromerid sponge mitochondrial genome that contains the same set of 41 genes as the hadromerid sponge Tethya actinia, including trnMe(cau), trnI2(cau), trnR2(ucu), and atp9, all of which are transcribed in the same direction. Furthermore, rRNA genes for the small and large ribosomal subunit are very long, rns is indeed the longest among Metazoa (1833 bp). Intergenic regions (IGR) comprise about 25% of S. domuncula mtDNA and include numerous direct and inverted repeats, as well as …

research product