0000000000281594
AUTHOR
Maria Kokkinopoulou
Synergy of Miniemulsion and Solvothermal Conditions for the Low-Temperature Crystallization of Magnetic Nanostructured Transition-Metal Ferrites
Crystalline first-row transition-metal (Mn, Fe, Co, Ni, Cu, and Zn) ferrites were prepared by an unprecedented synergetic combination of miniemulsion synthesis and solvothermal route, pursuing unconventional conditions in terms of space confinement, temperature, and pressure. This synergy allowed for obtaining six different crystalline ferrites at much lower temperature (i.e., 80 °C) than usually required and without any postsynthesis thermal treatment. X-ray diffraction (XRD) revealed that analogous ferrites synthesized by miniemulsion at ambient pressure or in bulk (i.e., from an aqueous bulk solution and not in the confined space of the miniemulsion droplets) either at ambient pressure o…
Colloidally Confined Crystallization of Highly Efficient Ammonium Phosphomolybdate Catalysts
Nanodroplets in inverse miniemulsions provide a colloidal confinement for the crystallization of ammonium phosphomolybdate (APM), influencing the resulting particle size. The effects of the space confinement are investigated by comparing the crystallization of analogous materials both in miniemulsion and in bulk solution. Both routes result in particles with a rhombododecahedral morphology, but the ones produced in miniemulsion have sizes between 40 and 90 nm, 3 orders of magnitude smaller than the ones obtained in bulk solution. The catalytic activity of the materials is studied by taking the epoxidation of cis-cyclooctene as a model reaction. The miniemulsion route yields APM particles ca…
Uptake of polyphosphate microparticles in vitro (SaOS-2 and HUVEC cells) followed by an increase of the intracellular ATP pool size
Recently two approaches were reported that addressed a vitally important problem in regenerative medicine, i. e. the successful treatment of wounds even under diabetic conditions. Accordingly, these studies with diabetic rabbits [Sarojini et al. PLoS One 2017, 12(4):e0174899] and diabetic mice [Müller et al. Polymers 2017, 9, 300] identified a novel (potential) target for the acceleration of wound healing in diabetes. Both studies propose a raise of the intracellular metabolic energy status via exogenous administration either of ATP, encapsulated into lipid vesicles, or of polyphosphate (polyP) micro-/nanoparticles. Recently this physiological polymer, polyP, was found to release metabolic …
Role of ATP during the initiation of microvascularization: acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyphosphate
The in vitro tube formation assay with human umbilical vein endothelial cells (HUVEC) was applied to identify the extra- and intracellular sources of metabolic energy/ATP required for cell migration during the initial stage of microvascularization. Extracellularly, the physiological energy-rich polymer, inorganic polyphosphate (polyP), applied as biomimetic amorphous calcium polyP microparticles (Ca-polyP-MP), is functioning as a substrate for ATP generation most likely via the combined action of the alkaline phosphatase (ALP) and the adenylate kinase (AK). The linear Ca-polyP-MP with a size of 40 phosphate units, close to the polyP in the acidocalcisomes in the blood platelets, were found …
Amorphous Ca2+ polyphosphate nanoparticles regulate the ATP level in bone-like SaOS-2 cells
ABSTRACT Polyphosphate (polyP) is a physiologically occurring polyanion that is synthesized especially in bone-forming osteoblast cells and blood platelets. We used amorphous polyP nanoparticles, complexed with Ca2+, that have a globular size of ∼100 nm. Because polyP comprises inorganic orthophosphate units that are linked together through high-energy phosphoanhydride bonds, we questioned whether the observed morphogenetic effect, elicited by polyP, is correlated with the energy-generating machinery within the cells. We show that exposure of SaOS-2 osteoblast-like cells to polyP results in a strong accumulation of mitochondria and a parallel translocation of the polyP-degrading enzyme alka…
Two-Armed Activation of Bone Mineral Deposition by the Flavones Baicalin and Baicalein, Encapsulated in Polyphosphate Microparticles
In this study, we investigated the effect of the two flavonoids, baicalin (baicalein 7-O-[Formula: see text]- d-glucuronic acid) and its aglycone, baicalein (5,6,7-trihydroxyflavone), after encapsulation into amorphous calcium polyphosphate (Ca-polyP) microparticles on mineralization of primary human osteoblasts (phOSB). Both flavonoids, which come from root extracts of Scutellaria baicalensis Georgi, are used in Traditional Chinese Medicine, and are nontoxic in cells up to a concentration of 3[Formula: see text][Formula: see text]g/ml. The morphogenetically active, energy-rich Ca-polyP particles with a stoichiometric P:Ca ratio of 1:2 are degraded by cellular alkaline phosphatase (ALP) to…
Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP.
Here, we studied the potential role of inorganic polyphosphate (polyP) as an energy source for ADP and ATP formation in the extracellular space. In SaOS-2 cells, we show that matrix vesicles are released into the extracellular space after incubation with polyP. These vesicles contain both alkaline phosphatase (ALP) and adenylate kinase (AK) activities (mediated by ALPL and AK1 enzymes). Both enzymes translocate to the cell membrane in response to polyP. To distinguish the process(es) of AMP and ADP formation during ALP hydrolysis from the ATP generated via the AK reaction, inhibition studies with the AK inhibitor A(5')P5(5')A were performed. We found that ADP formation in the extracellular …
Small-sized granules of biphasic bone substitutes support fast implant bed vascularization
The present study investigated the influence of granule size of 2 biphasic bone substitutes (BoneCeramic® 400-700 μm and 500-1000 μm) on the induction of multinucleated giant cells (MNGCs) and implant bed vascularization in a subcutaneous implantation model in rats. Furthermore, degradation mechanisms and particle phagocytosis of both materials were examined by transmission electron microscopy (TEM). Both granule types induced tissue reactions involving primarily mononuclear cells and only small numbers of MNGCs. Higher numbers of MNGCs were detected in the group with small granules starting on day 30, while higher vascularization was observed only at day 10 in this group. TEM analysis reve…
The Role of the Protein Corona in the Uptake Process of Nanoparticles
On the Ultrastructure and Function of Rhogocytes from the Pond Snail Lymnaea stagnalis
Rhogocytes, also termed “pore cells”, occur as solitary or clustered cells in the connective tissue of gastropod molluscs. Rhogocytes possess an enveloping lamina of extracellular matrix and enigmatic extracellular lacunae bridged by cytoplasmic bars that form 20 nm diaphragmatic slits likely to act as a molecular sieve. Recent papers highlight the embryogenesis and ultrastructure of these cells, and their role in heavy metal detoxification. Rhogocytes are the site of hemocyanin or hemoglobin biosynthesis in gastropods. Based on electron microscopy, we recently proposed a possible pathway of hemoglobin exocytosis through the slit apparatus, and provided molecular evidence of a common phylog…
A synthetic biology approach for the fabrication of functional (fluorescent magnetic) bioorganic–inorganic hybrid materials in sponge primmorphs
During evolution, sponges (Porifera) have honed the genetic toolbox and biosynthetic mechanisms for the fabrication of siliceous skeletal components (spicules). Spicules carry a protein scaffold embedded within biogenic silica (biosilica) and feature an amazing range of optical, structural, and mechanical properties. Thus, it is tempting to explore the low-energy synthetic pathways of spiculogenesis for the fabrication of innovative hybrid materials. In this synthetic biology approach, the uptake of multifunctional nonbiogenic nanoparticles (fluorescent, superparamagnetic) by spicule-forming cells of bioreactor-cultivated sponge primmorphs provides access to spiculogenesis. The ingested nan…
3D-Ultrastructure, Functions and Stress Responses of Gastropod (Biomphalaria glabrata) Rhogocytes
Rhogocytes are pore cells scattered among the connective tissue of different body parts of gastropods and other molluscs, with great variation in their number, shape and size. They are enveloped by a lamina of extracellular matrix. Their most characteristic feature is the "slit apparatus", local invaginations of the plasma membrane bridged by cytoplasmic bars, forming slits of ca. 20 nm width. A slit diaphragm creates a molecular sieve with permeation holes of 20×20 nm. In blue-blooded gastropods, rhogocytes synthesize and secrete the respiratory protein hemocyanin, and it has been proposed-though not proven-that in the rare red-blooded snail species they might synthesize and secrete the he…