Two-loop electroweak corrections to the ρ parameter beyond the leading approximation
We show that in the framework of the pinch technique the universal part of the $\rho$ parameter can be meaningfully defined, beyond one loop. The universal part so obtained satisfies the crucial requirements of gauge-independence, finiteness, and process-independence, even when subleading contributions of the top quark are included. The mechanism which enforces the aforementioned properties is explained in detail, and several subtle field theoretical issues are discussed. Explicit calculations of the sub-leading two-loop corrections of order $O(G_{\mu}^{2}m^{2}_{t}M_{Z}^{2})$ are carried out in the context of an $SU(2)$ model, with $M_{W}=M_{Z}$, and various intermediate and final results a…