0000000000282105

AUTHOR

Mattia Antonino Di Gangi

0000-0003-4491-0025

Computational Intelligence and Citizen Communication in the Smart City

Information and communication are at the core of the intelligent city of tomorrow, and the key components of a smart city cannot prescind from data exchanges and interconnectedness. Citizen communication is an integral part of the smart city’s development plans: freedom of information and involvement in collective decisions, e-democracy and decision-making feedback can be greatly enhanced in an intelligent city, and, among other smart city components, foster a new era of participation and wise decisions. In this contribution we describe the methodologies that can be implemented in order to correctly develop automatic recognition systems for citizen communication, paying special attention to…

research product

Deep learning architectures for prediction of nucleosome positioning from sequences data

Abstract Background Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully performed by com…

research product

Deep learning network for exploiting positional information in nucleosome related sequences

A nucleosome is a DNA-histone complex, wrapping about 150 pairs of double-stranded DNA. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells to form the Chromatin. Nucleosome positioning genome wide play an important role in the regulation of cell type-specific gene activities. Several biological studies have shown sequence specificity of nucleosome presence, clearly underlined by the organization of precise nucleotides substrings. Taking into consideration such advances, the identification of nucleosomes on a genomic scale has been successfully performed by DNA sequence features representation and classical supervised classification methods such as Support Vec…

research product

Recurrent Deep Neural Networks for Nucleosome Classification

Nucleosomes are the fundamental repeating unit of chromatin. A nucleosome is an 8 histone proteins complex, in which approximately 147–150 pairs of DNA bases bind. Several biological studies have clearly stated that the regulation of cell type-specific gene activities are influenced by nucleosome positioning. Bioinformatic studies have improved those results showing proof of sequence specificity in nucleosomes’ DNA fragment. In this work, we present a recurrent neural network that uses nucleosome sequence features representation for their classification. In particular, we implement an architecture which stacks convolutional and long short-term memory layers, with the main purpose to avoid t…

research product

Effectiveness of Data-Driven Induction of Semantic Spaces and Traditional Classifiers for Sarcasm Detection

Irony and sarcasm are two complex linguistic phenomena that are widely used in everyday language and especially over the social media, but they represent two serious issues for automated text understanding. Many labeled corpora have been extracted from several sources to accomplish this task, and it seems that sarcasm is conveyed in different ways for different domains. Nonetheless, very little work has been done for comparing different methods among the available corpora. Furthermore, usually, each author collects and uses their own datasets to evaluate his own method. In this paper, we show that sarcasm detection can be tackled by applying classical machine learning algorithms to input te…

research product

Deep Learning Architectures for DNA Sequence Classification

DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to cla…

research product