0000000000282105

AUTHOR

Mattia Antonino Di Gangi

0000-0003-4491-0025

showing 6 related works from this author

Computational Intelligence and Citizen Communication in the Smart City

2016

Information and communication are at the core of the intelligent city of tomorrow, and the key components of a smart city cannot prescind from data exchanges and interconnectedness. Citizen communication is an integral part of the smart city’s development plans: freedom of information and involvement in collective decisions, e-democracy and decision-making feedback can be greatly enhanced in an intelligent city, and, among other smart city components, foster a new era of participation and wise decisions. In this contribution we describe the methodologies that can be implemented in order to correctly develop automatic recognition systems for citizen communication, paying special attention to…

Computer scienceFreedom of informationComputational intelligence02 engineering and technologyInformation SystemSettore M-FIL/02 - Logica E Filosofia Della ScienzaInterconnectednessTask (project management)Argumentation theoryWorld Wide WebOrder (exchange)020204 information systemsSmart city0202 electrical engineering electronic engineering information engineeringSettore INF/01 - InformaticaComputer Science Applications1707 Computer Vision and Pattern RecognitionComputational Intelligence Citizen Communication Smart CityData scienceComputer Science ApplicationsCitizen CommunicationComputerSystemsOrganization_MISCELLANEOUSComputational IntelligenceSmart CityKey (cryptography)020201 artificial intelligence & image processingInformation Systems
researchProduct

Deep learning architectures for prediction of nucleosome positioning from sequences data

2018

Abstract Background Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully performed by com…

0301 basic medicineComputer scienceCellBiochemistrychemistry.chemical_compound0302 clinical medicineStructural Biologylcsh:QH301-705.5Nucleosome classificationSequenceSettore INF/01 - InformaticabiologyApplied MathematicsEpigeneticComputer Science ApplicationsChromatinNucleosomesmedicine.anatomical_structurelcsh:R858-859.7EukaryoteDNA microarrayDatabases Nucleic AcidComputational biologySaccharomyces cerevisiaelcsh:Computer applications to medicine. Medical informatics03 medical and health sciencesDeep LearningmedicineNucleosomeAnimalsHumansEpigeneticsMolecular BiologyGeneBase Sequencebusiness.industryDeep learningResearchReproducibility of Resultsbiology.organism_classificationYeastNucleosome classification Epigenetic Deep learning networks Recurrent neural networks030104 developmental biologylcsh:Biology (General)chemistryRecurrent neural networksROC CurveDeep learning networksArtificial intelligenceNeural Networks Computerbusiness030217 neurology & neurosurgeryDNABMC Bioinformatics
researchProduct

Deep learning network for exploiting positional information in nucleosome related sequences

2017

A nucleosome is a DNA-histone complex, wrapping about 150 pairs of double-stranded DNA. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells to form the Chromatin. Nucleosome positioning genome wide play an important role in the regulation of cell type-specific gene activities. Several biological studies have shown sequence specificity of nucleosome presence, clearly underlined by the organization of precise nucleotides substrings. Taking into consideration such advances, the identification of nucleosomes on a genomic scale has been successfully performed by DNA sequence features representation and classical supervised classification methods such as Support Vec…

0301 basic medicineComputer scienceSpeech recognitionCell02 engineering and technologyComputational biologyGenomeDNA sequencing03 medical and health scienceschemistry.chemical_compoundDeep Learning0202 electrical engineering electronic engineering information engineeringmedicineNucleosomeNucleotideGeneSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionichemistry.chemical_classificationSequenceSettore INF/01 - Informaticabiologybusiness.industryDeep learningnucleosomebiology.organism_classificationSubstringChromatinIdentification (information)030104 developmental biologymedicine.anatomical_structurechemistry020201 artificial intelligence & image processingEukaryoteNucleosome classification Epigenetic Deep learning networks Recurrent Neural NetworksArtificial intelligencebusinessDNA
researchProduct

Recurrent Deep Neural Networks for Nucleosome Classification

2020

Nucleosomes are the fundamental repeating unit of chromatin. A nucleosome is an 8 histone proteins complex, in which approximately 147–150 pairs of DNA bases bind. Several biological studies have clearly stated that the regulation of cell type-specific gene activities are influenced by nucleosome positioning. Bioinformatic studies have improved those results showing proof of sequence specificity in nucleosomes’ DNA fragment. In this work, we present a recurrent neural network that uses nucleosome sequence features representation for their classification. In particular, we implement an architecture which stacks convolutional and long short-term memory layers, with the main purpose to avoid t…

0301 basic medicineSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazionibiologySettore INF/01 - InformaticaComputer scienceComputational biologyChromatin03 medical and health scienceschemistry.chemical_compound030104 developmental biologyHistoneRecurrent neural networkchemistryFragment (logic)biology.proteinNucleosomeNucleosome classification Epigenetic Deep learning networks Recurrent Neural NetworksGeneDNASequence (medicine)
researchProduct

Effectiveness of Data-Driven Induction of Semantic Spaces and Traditional Classifiers for Sarcasm Detection

2019

Irony and sarcasm are two complex linguistic phenomena that are widely used in everyday language and especially over the social media, but they represent two serious issues for automated text understanding. Many labeled corpora have been extracted from several sources to accomplish this task, and it seems that sarcasm is conveyed in different ways for different domains. Nonetheless, very little work has been done for comparing different methods among the available corpora. Furthermore, usually, each author collects and uses their own datasets to evaluate his own method. In this paper, we show that sarcasm detection can be tackled by applying classical machine learning algorithms to input te…

FOS: Computer and information sciencesLinguistics and LanguageComputer Science - Machine LearningComputer sciencemedia_common.quotation_subjectSemantic spaceMachine Learning (stat.ML)02 engineering and technologycomputer.software_genreLanguage and LinguisticsTask (project management)Data-drivenMachine Learning (cs.LG)Artificial IntelligenceStatistics - Machine Learning020204 information systemsEveryday language0202 electrical engineering electronic engineering information engineeringSocial medianatural language processingmedia_commonComputer Science - Computation and LanguageSarcasmSettore INF/01 - Informaticabusiness.industryirony detectionIronymachine learningsemantic spaces020201 artificial intelligence & image processingArtificial intelligencebusinessIrony detectionsemantic spacecomputerComputation and Language (cs.CL)SoftwareNatural language processingsarcasm detection
researchProduct

Deep Learning Architectures for DNA Sequence Classification

2017

DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to cla…

0301 basic medicineComputer sciencebusiness.industryProcess (engineering)Deep learningFeature extractionFeature selection02 engineering and technologyMachine learningcomputer.software_genreConvolutional neural networkTask (project management)03 medical and health sciences030104 developmental biologyRecurrent neural network0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceRepresentation (mathematics)businesscomputer
researchProduct