0000000000282178

AUTHOR

Jose A. Padron Hidalgo

showing 2 related works from this author

Nonlinear Cook distance for Anomalous Change Detection

2020

In this work we propose a method to find anomalous changes in remote sensing images based on the chronochrome approach. A regressor between images is used to discover the most {\em influential points} in the observed data. Typically, the pixels with largest residuals are decided to be anomalous changes. In order to find the anomalous pixels we consider the Cook distance and propose its nonlinear extension using random Fourier features as an efficient nonlinear measure of impact. Good empirical performance is shown over different multispectral images both visually and quantitatively evaluated with ROC curves.

FOS: Computer and information sciencesComputer Science - Machine LearningComputer scienceComputer Vision and Pattern Recognition (cs.CV)Multispectral imageComputer Science - Computer Vision and Pattern Recognition0211 other engineering and technologies02 engineering and technologyMeasure (mathematics)Machine Learning (cs.LG)Kernel (linear algebra)symbols.namesake0502 economics and businessCook's distance021101 geological & geomatics engineering050208 financePixelbusiness.industry05 social sciencesPattern recognitionNonlinear systemFourier transformKernel (image processing)Computer Science::Computer Vision and Pattern RecognitionsymbolsArtificial intelligencebusinessChange detection
researchProduct

Efficient Nonlinear RX Anomaly Detectors

2020

Current anomaly detection algorithms are typically challenged by either accuracy or efficiency. More accurate nonlinear detectors are typically slow and not scalable. In this letter, we propose two families of techniques to improve the efficiency of the standard kernel Reed-Xiaoli (RX) method for anomaly detection by approximating the kernel function with either {\em data-independent} random Fourier features or {\em data-dependent} basis with the Nystr\"om approach. We compare all methods for both real multi- and hyperspectral images. We show that the proposed efficient methods have a lower computational cost and they perform similar (or outperform) the standard kernel RX algorithm thanks t…

FOS: Computer and information sciencesComputer Science - Machine LearningBasis (linear algebra)Computer scienceComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern Recognition0211 other engineering and technologiesApproximation algorithmHyperspectral imaging02 engineering and technologyElectrical Engineering and Systems Science - Image and Video ProcessingGeotechnical Engineering and Engineering GeologyRegularization (mathematics)Machine Learning (cs.LG)Nonlinear systemKernel (linear algebra)Kernel (statistics)FOS: Electrical engineering electronic engineering information engineeringAnomaly detectionElectrical and Electronic EngineeringAnomaly (physics)Algorithm021101 geological & geomatics engineeringIEEE Geoscience and Remote Sensing Letters
researchProduct