0000000000282418
AUTHOR
Roselyne Lacaze
GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products
International audience; This paper describes the scientific validation of the first version of global biophysical products (i.e., leaf area index, fraction of absorbed photosynthetically active radiation and fraction of vegetation cover), namely GEOV1, developed in the framework of the geoland-2/BioPar core mapping service at 1 km spatial resolution and 10-days temporal frequency. The strategy follows the recommendations of the CEOS/WGCV Land Product Validation for LAI global products validation. Several criteria of performance were evaluated, including continuity, spatial and temporal consistency, dynamic range of retrievals, statistical analysis per biome type, precision and accuracy. The…
Crop specific algorithms trained over ground measurements provide the best performance for GAI and fAPAR estimates from Landsat-8 observations
Abstract Estimation of Green Area Index (GAI) and fraction of Absorbed Photosynthetically Active Radiation (fAPAR) from decametric satellites was investigated in this study using a large database of ground measurements over croplands. It covers six main crop types including rice, corn, wheat and barley, sunflower, soybean and other types of crops. Ground measurements were completed using either digital hemispherical cameras, LAI-2000 or AccuPAR devices over sites representative of a decametric pixel. Sites were spread over the globe and the data collected at several growth stages concurrently to the acquisition of Landsat-8 images. Several machine learning techniques were investigated to re…
Combining hectometric and decametric satellite observations to provide near real time decametric FAPAR product
Abstract A wide range of ecological, agricultural, hydrological and meteorological applications at local to regional scales requires decametric biophysical data. However, before the launch of SENTINEL-2A, only few decametric products are produced and most of them remain limited by the small number of available observations, mostly due to a moderate revisit frequency combined with cloud occurrence. Conversely, kilometric and hectometric biophysical products are now widely available with almost complete and continuous coverage, but the associated spatial resolution limits the application over heterogeneous landscapes. The objective of this study is to combine unfrequent decametric spatial res…