0000000000282838
AUTHOR
J. M. Verde-velasco
Heavy quark symmetry constraints on semileptonic form factors and decay widths of doubly heavy baryons
We show how heavy quark symmetry constraints on doubly heavy baryon semileptonic decay widths can be used to test the validity of different quark model calculations. The large discrepancies in the results observed between different quark model approaches can be understood in terms of a severe violation of heavy quark spin symmetry constraints by some of those models.
Test of the heavy quark-light diquark approximation for baryons with a heavy quark
We check a commonly used approximation in which a baryon with a heavy quark is described as a heavy quark-light diquark system. The heavy quark influences the diquark internal motion reducing the average distance between the two light quarks. Besides, we show how the average distance between the heavy quark and any of the light quarks, and that between the heavy quark and the center of mass of the light diquark, are smaller than the distance between the two light quarks, which seems to contradict the heavy quark-light diquark picture. This latter result is in agreement with expectations from QCD sum rules and lattice QCD calculations. Our results also show that the diquark approximations pr…
Semileptonic B ->pi decays from an Omnes improved nonrelativistic constituent quark model
The semileptonic $B\to \pi l^+ \nu_l$ decay is studied starting from a simple quark model which includes the influence of the $B^*$ pole. To extend the predictions of a nonrelativistic constituent quark model from its region of applicability near $q^2_{\rm max}=(m_B-m_\pi)^2$ to all $q^2$ values accessible in the physical decay, we use a novel multiply-subtracted Omn\`es dispersion relation, which considerably diminishes the form factor dependence on the elastic $\pi B \to \pi B$ scattering amplitudes at high energies. By comparison to the experimental branching fraction we extract $|V_{ub}| = 0.0034 \pm 0.0003 ({\rm exp}) \pm 0.0007 ({\rm theory})$. To further test our framework, we also s…
Study of semileptonic and nonleptonic decays of the B-c(-) meson
We evaluate semileptonic and two--meson nonleptonic decays of the $B_c^-$ meson in the framework of a nonrelativistic quark model. The former are done in spectator approximation using one--body current operators at the quark level. Our model reproduces the constraints of heavy quark spin symmetry obtained in the limit of infinite heavy quark mass. For the two--meson nonleptonic decays we work in factorization approximation. We compare our results to the ones obtained in different relativistic approaches.
Study of the semileptonic decays B→π, D→π and D→K
The semileptonic decay B->pi is studied starting from a simple quark model that takes into account the effect of the B* resonance. A novel, multiply subtracted, Omnes dispersion relation has been implemented to extend the predictions of the quark model to all q^2 values accesible in the physical decay. By comparison to the experimental data, we extract |V_ub|=0.0034 +/- 0.0003(exp.) +/- 0.0007(theory). As a further test of the model, we have also studied D->pi and D->K decays for which we get good agreement with experiment.
Static properties and semileptonic decays of doubly heavy baryons in a nonrelativistic quark model
We evaluate static properties and semileptonic decays for the ground state of doubly heavy $\Xi, \Xi', \Xi^*$ and $\Omega, \Omega', \Omega^*$ baryons. Working in the framework of a nonrelativistic quark model, we solve the three--body problem by means of a variational ansazt made possible by heavy quark spin symmetry constraints. To check the dependence of our results on the inter-quark interaction we use five different quark-quark potentials that include a confining term plus Coulomb and hyperfine terms coming from one--gluon exchange. Our results for static properties (masses, charge and mass radii, magnetic moments...) are, with a few exceptions for the magnetic moments, in good agreemen…
Doubly heavy quark baryon spectroscopy and semileptonic decay
Working in the framework of a nonrelativistic quark model we evaluate the spectra and semileptonic decay widths for the ground state of doubly heavy $\Xi$ and $\Omega$ baryons. We solve the three-body problem using a variational ansatz made possible by the constraints imposed by heavy quark spin symmetry. In order to check the dependence of our resultson the inter-quark interaction we have used five different quarkquark potentials which include Coulomb and hyperfine terms coming fromone-gluon exchange, plus a confining term. Our results for the spectra are in good agreement with a previous calculation done using a Faddeev approach. For the semileptonic decay our results for the total decay …
Study of exclusive semileptonic and nonleptonic decays ofBc−in a nonrelativistic quark model
We present results for different observables measured in semileptonic and non-leptonic decays of the $B_c^-$ meson. The calculations have been done within the framework of a nonrelativistic constituent quark model. In order to check the sensitivity of all our results against the inter-quark interaction we use five different quark--quark potentials. We obtain form factors, decay widths and asymmetry parameters for semileptonic $B_c^-\to c\bar c$ and $B_c^-\to \bar B$ decays. In the limit of infinite heavy quark mass our model reproduces the constraints of heavy quark spin symmetry. For the actual heavy quark masses we find nonetheless large corrections to that limiting situation for some for…