Morphological and chemical dynamics upon electrochemical cyclic sodiation of electrochromic tungsten oxide coatings extracted by in situ ellipsometry.
The sodiation–desodiation process of sputtered amorphous electrochromic tungsten oxide coatings in an aqueous-based medium was simultaneously monitored over 99 cycles by cyclic voltammetry and in situ spectroscopic ellipsometry. This allowed extracting the evolution of optical and geometrical parameters upon cycling. The resulting electrochemical coloring-bleaching process was dynamically fitted in the 1.8–2.8 eV optical range with a four-phase model including a constrained spline parametrization of the dielectric function. This allows real time access to thickness, surface roughness, and dielectric function of N a x W O 3 . The temporal evolution of the latter in the fully colored state wa…
Towards enhanced durability of electrochromic WO3 interfaced with liquid or ceramic sodium-based electrolytes
Abstract The reversible intercalation of sodium ion into tungsten oxide WO3 appears as an interesting alternative to hydrogen or lithium ion reduction in order to get the characteristic transition from clear transparent to bluish coloration in electrochromic devices, but it has been comparatively less considered. In order to address further viable all-ceramic devices based on sodium ion intercalation and overcome the issue of WO3 degradation in aqueous media, three configurations of WO3 thin film-based electrochromic half-cells were tested, namely in (i) aqueous acidified Na2SO4 electrolyte, (ii) room temperature ionic liquid BEPipTFSI electrolyte and (iii) aqueous acidified Na2SO4 electrol…
Coloration mechanism of electrochromic Na x WO3 thin films
International audience; The coloration mechanism of tungsten trioxide (WO3) upon insertion of alkali ions is still under debate after several decades of research. This Letter provides new insights into the reversible insertion and coloration mechanisms of Na+ ions in WO3 thin films sputter-deposited on ITO/glass substrates. A unique model based on a constrained spline approach was developed and applied to draw out ε1+iε2 from spectroscopic ellipsometry data from 0.6 to 4.8 eV whatever the state of the electrochromic active layer, i.e. as-deposited, colored or bleached. It is shown that electrochemically intercalated sodium-tungsten trioxide, NaxWO3 (x=0.1, 0.2, 0.35), exhibits an absorption…