0000000000282932

AUTHOR

Qiang Sun

0000-0003-4903-4570

A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons

Graphene nanoribbons (GNRs) have attracted considerable interest as their atomically tunable structure makes them promising candidates for future electronic devices. However, obtaining detailed information about the length of GNRs has been challenging and typically relies on low-temperature scanning tunneling microscopy. Such methods are ill-suited for practical device application and characterization. In contrast, Raman spectroscopy is a sensitive method for the characterization of GNRs, in particular for investigating their width and structure. Here, we report on a length-dependent, Raman active low-energy vibrational mode that is present in atomically precise, bottom-up synthesized armch…

research product

On-Surface Synthesis of Unsaturated Carbon Nanostructures with Regularly Fused Pentagon–Heptagon Pairs

Multiple fused pentagon-heptagon pairs are frequently found as defects at the grain boundaries of the hexagonal graphene lattice and are suggested to have a fundamental influence on graphene-related materials. However, the construction of sp2-carbon skeletons with multiple regularly fused pentagon-heptagon pairs is challenging. In this work, we found that the pentagon-heptagon skeleton of azulene was rearranged during the thermal reaction of an azulene-incorporated organometallic polymer on Au(111). The resulting sp2-carbon frameworks were characterized by high-resolution scanning probe microscopy techniques and feature novel polycyclic architectures composed of multiple regularly fused pen…

research product