0000000000282933

AUTHOR

Colin Daniels

0000-0002-3512-7146

showing 2 related works from this author

A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons

2019

Graphene nanoribbons (GNRs) have attracted considerable interest as their atomically tunable structure makes them promising candidates for future electronic devices. However, obtaining detailed information about the length of GNRs has been challenging and typically relies on low-temperature scanning tunneling microscopy. Such methods are ill-suited for practical device application and characterization. In contrast, Raman spectroscopy is a sensitive method for the characterization of GNRs, in particular for investigating their width and structure. Here, we report on a length-dependent, Raman active low-energy vibrational mode that is present in atomically precise, bottom-up synthesized armch…

530 Physicssubstrate transferSTMFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology010402 general chemistryDFT01 natural sciencessymbols.namesakegraphene nanoribbons; Raman spectroscopy; length-dependent mode; STM; substrate transfer; vibrational modes; DFT540 ChemistryMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials Sciencevibrational modesCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryGeneral EngineeringMode (statistics)Materials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesMolecular vibrationRaman spectroscopysymbols570 Life sciences; biologyOptoelectronicslength-dependent mode0210 nano-technologybusinessRaman spectroscopyGraphene nanoribbonsgraphene nanoribbons
researchProduct

Optimized substrates and measurement approaches for Raman spectroscopy of graphene nanoribbons

2019

The on-surface synthesis of graphene nanoribbons (GNRs) allows for the fabrication of atomically precise narrow GNRs. Despite their exceptional properties which can be tuned by ribbon width and edge structure, significant challenges remain for GNR processing and characterization. In this contribution, we use Raman spectroscopy to characterize different types of GNRs on their growth substrate and to track their quality upon substrate transfer. We present a Raman-optimized (RO) device substrate and an optimized mapping approach that allows for acquisition of high-resolution Raman spectra, achieving enhancement factors as high as 120 with respect to signals measured on standard SiO2/Si substra…

Fabrication530 PhysicsFOS: Physical sciences02 engineering and technologySubstrate (electronics)01 natural sciencessymbols.namesakeQuality (physics)540 Chemistry0103 physical sciencesRibbon010302 applied physicsCondensed Matter - Materials Sciencebusiness.industryMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCharacterization (materials science)Molecular vibrationsymbols570 Life sciences; biologyOptoelectronics0210 nano-technologybusinessRaman spectroscopyGraphene nanoribbons
researchProduct