0000000000283265

AUTHOR

S. Macmullin

showing 4 related works from this author

First Axion Results from the XENON100 Experiment

2014

We present the first results of searches for axions and axion-like-particles with the XENON100 experiment. The axion-electron coupling constant, $g_{Ae}$, has been tested by exploiting the axio-electric effect in liquid xenon. A profile likelihood analysis of 224.6 live days $\times$ 34 kg exposure has shown no evidence for a signal. By rejecting $g_{Ae}$, larger than $7.7 \times 10^{-12}$ (90% CL) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 eV/c$^2$ and 80 eV/c$^2$, respectively. For axion-like-particles, under the assumption that they constitute the whole abundance of dark matte…

Nuclear and High Energy PhysicsParticle physicsAstrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)astro-ph.GADark matterchemistry.chemical_elementFOS: Physical sciencesAstrophysics01 natural sciencesCosmologydark matterXenonHigh Energy Physics - Phenomenology (hep-ph)Assioni0103 physical sciences010306 general physicsAxionLiquid XenonCouplingCoupling constantQuantum chromodynamicsPhysics010308 nuclear & particles physicshep-phAstrophysics - Astrophysics of GalaxiesGalaxyHigh Energy Physics - Phenomenologychemistry[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Astrophysics of Galaxies (astro-ph.GA)astro-ph.COAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Physics reach of the XENON1T dark matter experiment.

2016

The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nu…

dark matter simulationsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsdark matter experimentFOS: Physical scienceschemistry.chemical_elementCosmic ray7. Clean energy01 natural sciencesdark matter simulationNuclear physicsRecoilXenonIonization0103 physical sciencesNeutronNuclear Experiment010306 general physicsPhysicsMuon010308 nuclear & particles physicsdark matter experimentsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)dark matter experiments; dark matter simulationschemistryNeutrinoNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment

2014

XENON is a direct detection dark matter project, consisting of a time projection chamber (TPC) that uses xenon in double phase as a sensitive detection medium. XENON100, located at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, is one of the most sensitive experiments of its field. During the operation of XENON100, the design and construction of the next generation detector (of ton-scale mass) of the XENON project, XENON1T, is taking place. XENON1T is being installed at LNGS as well. It has the goal to reduce the background by two orders of magnitude compared to XENON100, aiming at a sensitivity of $2 \cdot 10^{-47} \mathrm{cm}^{\mathrm{2}}$ for a WIMP mass of 50 GeV/c$^{2}$. With…

axionsPhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Cherenkov and transition radiationCherenkov detectorPhysics::Instrumentation and DetectorsDark matterDetector modelling and simulations I (interaction of radiation with matterchemistry.chemical_elementFOS: Physical sciences01 natural scienceslaw.inventionNuclear physicsXenonWIMPlawCherenkov and transition radiation Detector modelling and simulations Cherenkov detectors Dark Matter detectorsetc.)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Dark Matter detectors (WIMPsMathematical PhysicsCherenkov radiationetc)PhysicsMuonTime projection chamber010308 nuclear & particles physicsCherenkov detectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysicsinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)Cherenkov and transition radiation; Cherenkov detectors; Dark Matter detectors (WIMPs axions etc.); Detector modelling and simulations I (interaction of radiation with matter; interaction of hadrons with matter etc); interaction of photons with matter[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]interaction of hadrons with matterchemistryHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsJOURNAL OF INSTRUMENTATION
researchProduct

Search for Event Rate Modulation in XENON100 Electronic Recoil Data

2015

We have searched for periodic variations of the electronic recoil event rate in the (2-6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an un-binned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1 sigma for all periods suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8 sigma, the analysis of a multiple-scatter control sample and the phas…

Dark Matter Wimps ModulationPhysicsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 PhysicsDetectorDark matterPhase (waves)FOS: Physical sciencesGeneral Physics and AstronomySigmaInstrumentation and Detectors (physics.ins-det)AstrophysicsParticle detectorHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)RecoilModulation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Event (particle physics)Astrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review Letters
researchProduct