6533b7d6fe1ef96bd1266853

RESEARCH PRODUCT

Physics reach of the XENON1T dark matter experiment.

M. Von SiversHui WangM. WeberC. GrignonS. MacmullinP. BarrowL. BütikoferT. BergerAuke-pieter ColijnD. MayaniS. RosendahlM. MessinaFlorian KaetherT. Marrodán UndagoitiaJean-pierre CussonneauM. P. DecowskiManfred LindnerA. ManfrediniM. CervantesE. K. U. GrossC. HasterokD. LellouchA. TiseniC. GeisA. RizzoP. A. BreurH. LandsmanA. LyashenkoP. Di GangiE. DuchovniLaura BaudisLuke GoetzkeBart PelssersGiacomo BrunoP. De PerioH. ContrerasN. PrielJoão CardosoS. E. A. OrrigoW. HampelP. ShaginJ. A. M. LopesA. KishJulien MasbouL. LevinsonC. TunnellC. BalanF. D. AmaroMichelle GallowayL. Scotto LavinaApril S. BrownR. ItayD. FrancoF. ArneodoF. PiastraM. Le CallochGuillaume PlanteN. RuppS. FattoriJ. PienaarZ. GreeneJochen SchreinerB. MiguezS. BruennerJ. WulfS. SchindlerLior AraziK. MicheneauG. C. TrincheroBoris BauermeisterBoris BauermeisterC. LevyJelle AalbersG. KesslerHardy SimgenA. D. FerellaM. AnthonyS. ReichardL. RauchCh. WeinheimerA. J. Melgarejo FernandezD. ThersR. F. LangM. AlfonsiJan ConradJ. NaganomaC. ReuterM. SelviA. FieguthD. CoderreR. WallY. MengM. MurraA. MolinarioM. ScheibelhutJ.m.f. Dos SantosF. AgostiniB. KaminskyD. CichonSebastian LindemannElena AprileEthan BrownF. V. MassoliW. FulgioneYuehuan WeiM. GarbiniA. SteinAmos BreskinYanxi ZhangUwe OberlackA. Di GiovanniMarc SchumannP. PakarhaRan BudnikGabriella SartorelliR. Persiani

subject

dark matter simulationsPhysics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsdark matter experimentFOS: Physical scienceschemistry.chemical_elementCosmic ray7. Clean energy01 natural sciencesdark matter simulationNuclear physicsRecoilXenonIonization0103 physical sciencesNeutronNuclear Experiment010306 general physicsPhysicsMuon010308 nuclear & particles physicsdark matter experimentsAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)dark matter experiments; dark matter simulationschemistryNeutrinoNucleonAstrophysics - Cosmology and Nongalactic Astrophysics

description

The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 \pm 0.15) \cdot 10^{-4}$ ($\rm{kg} \cdot day \cdot keV)^{-1}$, mainly due to the decay of $^{222}\rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 \pm 0.1)$ ($\rm{t} \cdot y)^{-1}$ from radiogenic neutrons, $(1.8 \pm 0.3) \cdot 10^{-2}$ ($\rm{t} \cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($\rm{t} \cdot y)^{-1}$ from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency $\mathcal{L}_\mathrm{eff}$, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a $2$ y measurement in $1$ t fiducial volume, the sensitivity reaches a minimum cross section of $1.6 \cdot 10^{-47}$ cm$^2$ at m$_\chi$=$50$ GeV/$c^2$.

10.1088/1475-7516/2016/04/027http://dx.doi.org/10.1088/1475-7516/2016/04/027