0000000000283312

AUTHOR

Christopher J. Tomás-catalá

Thermo-setting glass ionomer cements promote variable biological responses of human dental pulp stem cells.

To evaluate the in vitro cytotoxicity of Equia Forte (GC, Tokyo, Japan) and Ionostar Molar (Voco, Cuxhaven, Germany) on human dental pulp stem cells (hDPSCs).hDPSCs isolated from third molars were exposed to several dilutions of Equia Forte and Ionostar Molar eluates (1/1, 1/2 and 1/4). These eluates were obtained by storing material samples in respective cell culture medium for 24h (n=40). hDPSCs in basal growth culture medium were the control. Cell viability and cell migration assays were performed using the MTT and wound-healing assays, respectively. Also, induction of apoptosis and changes in cell phenotype were evaluated by flow cytometry. Changes in cell morphology were analysed by im…

research product

Human Dental Pulp Stem Cells Exhibit Different Biological Behaviours in Response to Commercial Bleaching Products

The purpose of this study was to evaluate the diffusion capacity and the biological effects of different bleaching products on human dental pulp stem cells (hDPSCs). The bleaching gel was applied for 90, 30 or 15 min to enamel/dentine discs that adapted in an artificial chamber. The diffusion of hydrogen peroxide (HP) was analysed by fluorometry and the diffusion products were applied to hDPSCs. Cell viability, cell migration and cell morphology assays were performed using the eluates of diffusion products. Finally, cell apoptosis and the expression of mesenchymal stem cell markers were analysed by flow cytometry. Statistical analysis was performed using analysis of variance and Kruskal&nda…

research product

Biocompatibility of New Pulp-capping Materials NeoMTA Plus, MTA Repair HP, and Biodentine on Human Dental Pulp Stem Cells

The aim of the present study was to evaluate the in vitro cytotoxicity of MTA Repair HP, NeoMTA Plus, and Biodentine, new bioactive materials used for dental pulp capping, on human dental pulp stem cells (hDPSCs).Biological testing was carried out in vitro on hDPSCs. Cell viability and cell migration assays were performed using eluates of each capping material. To evaluate cell morphology and cell attachment to the different materials, hDPSCs were directly seeded onto the material surfaces and analyzed by scanning electron microscopy. The chemical composition of the pulp-capping materials was determined by energy-dispersive X-ray and eluates were analyzed by inductively coupled plasma-mass …

research product