0000000000283325

AUTHOR

Bente Vestergaard

0000-0001-8011-6414

showing 7 related works from this author

Observation of the Early Structural Changes Leading to the Formation of Protein Superstructures.

2014

Formation of superstructures in protein aggregation processes has been indicated as a general pathway for several proteins, possibly playing a role in human pathologies. There is a severe lack of knowledge on the origin of such species in terms of both mechanisms of formation and structural features. We use equine lysozyme as a model protein, and by combining spectroscopic techniques and microscopy with X-ray fiber diffraction and ab initio modeling of Small Angle X-ray Scattering data, we isolate the partially unfolded state from which one of these superstructures (i.e., particulate) originates. We reveal the low-resolution structure of the unfolded state and its mechanism of formation, hi…

unfolded stateChemistryMechanism (biology)Ab initioModel proteinamyloid superstructure SAXS Spectroscopy Fluorescence microscopy dye diffusionNanotechnologyProtein aggregationBiophysicsGeneral Materials ScienceLack of knowledgePhysical and Theoretical Chemistryconformational changesFiber diffractionparticulateprotein superstructureshydrophobicity
researchProduct

Cholesterol facilitates interactions between α‐synuclein oligomers and charge‐neutral membranes

2015

AbstractOligomeric species formed during α-synuclein fibrillation are suggested to be membrane-disrupting agents, and have been associated with cytotoxicity in Parkinson’s disease. The majority of studies, however, have revealed that the effect of α-synuclein oligomers is only noticeable on systems composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model membranes are either unperturbed, disrupt, or undergo dramatic morphological changes and segregate …

AmyloidParkinson's diseaseFluorescent DyeBiophysicsPlasma protein bindingBiochemistryOligomerProtein Structure SecondaryMultiphoton microscopyMembrane phase separationCell membranechemistry.chemical_compoundGeneticStructural Biology2-NaphthylamineLaurdan fluorescenceGeneticsFluorescence microscopemedicineMolecular BiologyFluorescent DyesLaurateα-SynucleinMembranesChemistryMedicine (all)2-NaphthylamineCell MembraneMembraneCell BiologySettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)CholesterolMembranemedicine.anatomical_structureBiophysicBiochemistryStructural biologyOligomeralpha-SynucleinParkinson’s diseaseProtein MultimerizationLaurdanLauratesProtein BindingFEBS Letters
researchProduct

Unlocked Concanavalin A Forms Amyloid-like Fibrils from Coagulation of Long-lived "Crinkled'' Intermediates

2013

Understanding the early events during amyloid aggregation processes is crucial to single out the involved molecular mechanisms and for designing ad hoc strategies to prevent and reverse amyloidogenic disorders. Here, we show that, in conditions in which the protein is positively charged and its conformational flexibility is enhanced, Concanavalin A leads to fibril formation via a non-conventional aggregation pathway. Using a combination of light scattering, circular dichroism, small angle X-ray scattering, intrinsic (Tryptophan) and extrinsic (ANS) fluorescence and confocal and 2-photon fluorescence microscopy we characterize the aggregation process as a function of the temperature. We high…

Macromolecular AssembliesProteomicsCircular dichroismProtein StructureAmyloidProtein FoldingScienceMedical BiotechnologyBiophysics02 engineering and technologyFibrilBiochemistryProtein Chemistry03 medical and health sciencesProtein structureMedicinsk bioteknologiFluorescence microscopeNative stateConcanavalin ACoagulation (water treatment)Protein InteractionsBiology030304 developmental biology0303 health sciencesprotein aggregation amyloid concanavalin A intermediates spectroscopy advanced fluorescence microscopyMultidisciplinaryChemical PhysicsChemistryPhysicsCircular DichroismQRProteins021001 nanoscience & nanotechnologyProtein Structure TertiaryLuminescent ProteinsBiochemistryBiophysicsMedicineProtein folding0210 nano-technologyHydrophobic and Hydrophilic InteractionsFunction (biology)Research Article
researchProduct

Ethanol Controls the Self-Assembly and Mesoscopic Properties of Human Insulin Amyloid Spherulites.

2018

Protein self-assembly into amyloid fibrils or highly hierarchical superstructures is closely linked to neurodegenerative pathologies as Alzheimer's and Parkinson's diseases. Moreover, protein assemblies also emerged as building blocks for bioinspired nanostructured materials. In both the above mentioned fields, the main challenge is to control the growth and properties of the final protein structure. This relies on a more fundamental understanding of how interactions between proteins can determine structures and functions of biomolecular aggregates. Here, we identify a striking effect of the hydration of the single human insulin molecule and solvent properties in controlling hydrophobicity/…

0301 basic medicineCircular dichroismAmyloidAmyloidInsulins02 engineering and technologyMicroscopy Atomic Force03 medical and health scienceschemistry.chemical_compoundProtein structureMicroscopy Electron TransmissionScattering Small AngleSpectroscopy Fourier Transform InfraredMaterials ChemistryMoleculeHumansPhysical and Theoretical ChemistryAMYLOID SPECTROSOPY FLUORECENCE MICROSCOPYMesoscopic physicsEthanolMicroscopy ConfocalEthanolChemistryCircular DichroismOptical Imaging021001 nanoscience & nanotechnologySurfaces Coatings and FilmsNeutron Diffraction030104 developmental biologySpheruliteBiophysics0210 nano-technologySuperstructure (condensed matter)Hydrophobic and Hydrophilic Interactions
researchProduct

Protein/lipid coaggregates are formed during α-synuclein-induced disruption of lipid bilayers.

2014

Amyloid formation is associated with neurodegenerative diseases such as Parkinson's disease (PD). Significant α-synuclein (αSN) deposition in lipid-rich Lewy bodies is a hallmark of PD. Nonetheless, an unraveling of the connection between neurodegeneration and amyloid fibrils, including the molecular mechanisms behind potential amyloid-mediated toxic effects, is still missing. Interaction between amyloid aggregates and the lipid cell membrane is expected to play a key role in the disease progress. Here, we present experimental data based on hybrid analysis of two-photon-microscopy, solution small-angle X-ray scattering and circular dichroism data. Data show in real time changes in liposome …

Circular dichroismAmyloidPolymers and PlasticsAmyloidLipid BilayersBioengineeringProtein Structure SecondaryBiomaterialsCell membraneMaterials ChemistrymedicineScattering RadiationLipid bilayerSpectroscopyLiposomeLaurdanAdvanced MicroscopyChemistryCircular DichroismX-RaysNeurodegenerationCell MembraneLipid bilayer fusionProteinsmedicine.diseaseamyloid-membrane interactionco-aggregatemedicine.anatomical_structureMembraneBiophysicsalpha-SynucleinLewy BodiesBiomacromolecules
researchProduct

Trifluoroethanol modulates α-synuclein amyloid-like aggregate formation, stability and dissolution

2016

The conversion of proteins into amyloid fibrils and other amyloid-like aggregates is closely connected to the onset of a series of age-related pathologies. Upon changes in environmental conditions, amyloid-like aggregates may also undergo disassembly into oligomeric aggregates, the latter being recognized as key effectors in toxicity. This indicates new possible routes for in vivo accumulation of toxic species. In the light of the recognized implication of α-Synuclein (αSN) in Parkinson's disease, we present an experimental study on supramolecular assembly of αSN with a focus on stability and disassembly paths of such supramolecular aggregate species. Using spectroscopic techniques, two-pho…

0301 basic medicineAmyloidAmyloidBiophysicsSupramolecular chemistryProtein aggregationBiochemistrySupramolecular assembly03 medical and health scienceschemistry.chemical_compoundProtein AggregatesHumansDissolutionAlpha-synucleinProtein Stabilityproteins amyloid fibrils amyloid-like aggregates oligomeric aggregatesSpectrum AnalysisOrganic ChemistryAggregate (data warehouse)TemperatureTrifluoroethanolAmyloid fibrilCrystallography030104 developmental biologychemistryBiophysicsalpha-Synuclein
researchProduct

Formation of covalent di-tyrosine dimers in recombinant α-synuclein

2015

Parkinson's disease is associated with fibril deposition in the diseased brain. Misfolding events of the intrinsically disordered synaptic protein α-synuclein are suggested to lead to the formation of transient oligomeric and cytotoxic species. The etiology of Parkinson's disease is further associated with mitochondrial dysfunction and formation of reactive oxygen species. Oxidative stress causes chemical modification of native α-synuclein, plausibly further influencing misfolding events. Here, we present evidence for the spontaneous formation of covalent di-tyrosine α-synuclein dimers in standard recombinant protein preparations, induced without extrinsic oxidative or nitrative agents. The…

chemistry.chemical_classificationReactive oxygen speciesParkinson's diseasealphasynucleinamyloids di-tyrosine dimers EOM Parkinson’s disease SAXSSAXSOxidative phosphorylationFibrilmedicine.disease_causeIndustrial and Manufacturing Engineeringchemistry.chemical_compoundα-synucleinMonomerchemistryBiochemistryCovalent bondmedicinedi-tyrosine dimersamyloidsTyrosineProtein secondary structureEOMOxidative stressResearch PaperIntrinsically Disordered Proteins
researchProduct