Observation of the Early Structural Changes Leading to the Formation of Protein Superstructures.
Formation of superstructures in protein aggregation processes has been indicated as a general pathway for several proteins, possibly playing a role in human pathologies. There is a severe lack of knowledge on the origin of such species in terms of both mechanisms of formation and structural features. We use equine lysozyme as a model protein, and by combining spectroscopic techniques and microscopy with X-ray fiber diffraction and ab initio modeling of Small Angle X-ray Scattering data, we isolate the partially unfolded state from which one of these superstructures (i.e., particulate) originates. We reveal the low-resolution structure of the unfolded state and its mechanism of formation, hi…
Proinflammatory and amyloidogenic S100A9 induced by traumatic brain injury in mouse model.
Traumatic brain injury (TBI) represents a significant risk factor for development of neurodegenerative diseases such as Alzheimer’s and Parkinson’s. The S100A9-driven amyloid-neuroinflammatory cascade occurring during primary and secondary TBI events can serve as a mechanistic link between TBI and Alzheimer’s as demonstrated recently in the human brain tissues. Here by using immunohistochemistry in the controlled cortical impact TBI mouse model we have found pro-inflammatory S100A9 in the brain tissues of all mice on the first and third post-TBI days, while 70% of mice did not show any S100A9 presence on seventh post-TBI day similar to controls. This indicates that defensive mechanisms effe…
Unlocked Concanavalin A Forms Amyloid-like Fibrils from Coagulation of Long-lived "Crinkled'' Intermediates
Understanding the early events during amyloid aggregation processes is crucial to single out the involved molecular mechanisms and for designing ad hoc strategies to prevent and reverse amyloidogenic disorders. Here, we show that, in conditions in which the protein is positively charged and its conformational flexibility is enhanced, Concanavalin A leads to fibril formation via a non-conventional aggregation pathway. Using a combination of light scattering, circular dichroism, small angle X-ray scattering, intrinsic (Tryptophan) and extrinsic (ANS) fluorescence and confocal and 2-photon fluorescence microscopy we characterize the aggregation process as a function of the temperature. We high…