Vacuum polarization around stars: Nonlocal approximation
We compute the vacuum polarization associated with quantum massless fields around stars with spherical symmetry. The nonlocal contribution to the vacuum polarization is dominant in the weak field limit, and induces quantum corrections to the exterior metric that depend on the inner structure of the star. It also violates the null energy conditions. We argue that similar results also hold in the low energy limit of quantum gravity. Previous calculations of the vacuum polarization in spherically symmetric spacetimes, based on local approximations, are not adequate for newtonian stars.
Low energy Quantum Gravity from the Effective Average Action
Within the effective average action approach to quantum gravity, we recover the low energy effective action as derived in the effective field theory framework, by studying the flow of possibly non-local form factors that appear in the curvature expansion of the effective average action. We restrict to the one-loop flow where progress can be made with the aid of the non-local heat kernel expansion. We discuss the possible physical implications of the scale dependent low energy effective action through the analysis of the quantum corrections to the Newtonian potential.