Community detection‐based deep neural network architectures: A fully automated framework based on Likert‐scale data.
Deep neural networks (DNNs) have emerged as a state‐of‐the‐art tool in very different research fields due to its adaptive power to the decision space since they do not presuppose any linear relationship between data. Some of the main disadvantages of these trending models are that the choice of the network underlying architecture profoundly influences the performance of the model and that the architecture design requires prior knowledge of the field of study. The use of questionnaires is hugely extended in social/behavioral sciences. The main contribution of this work is to automate the process of a DNN architecture design by using an agglomerative hierarchical algorithm that mimics the con…