0000000000284968
AUTHOR
Guntis Japins
Manufacturing, structure and properties of recycled polyethylene terephthalate /liquid crystal polymer/montmorillonite clay nanocomposites
Polyethylene terephthalate (PET)/liquid crystal polymer (LCP)/monthmorillonite clay (MMT) compositions were obtained by melt mixing. Their mechanical, structural, rheological and thermal properties were investigated.
Elasticity and long-term behavior of recycled polyethylene terephthalate (rPET)/montmorillonite (MMT) composites
Abstract Recycled polyethylene terephthalate (rPET) nanocomposites with various amounts of montmorillonite clay (MMT) have been manufactured by using twin screw extrusion. By rising MMT weight content Wf up to 1 wt.% it is possible to increase yield strength and ultimate strength of the composite by 17% and 27% respectively in comparison to neat rPET. Introduction of MMT in the rPET leads also to considerable increase of the modulus of elasticity E. Relationship E(Wf), however, is non-linear and is characterized by slow-down in E growth along with increasing MMT content. At low nanofiller content experimental results are sufficiently well described by using the method of Mori–Tanaka and the…
Recycled Polycarbonate Based Nanocomposites
Post-consumer polycarbonate (RPC) blends with various amounts (5, 10, 30 wt. %) of ethylene vinyl acetate copolymer (EVAc) are investigated as potential nanocomposite matrices. At EVAc weight content of 10 wt.% maximum tensile strength σM and impact strength AI increase is observed in comparison to neat RPC. Addition of EVAc, however, reduces resistance to creep as well as decrease thermal stability of the investigated compositions. Addition of montmorillonite nanoclay (MMT), however, allows increase modulus of elasticity E and yield strength σY of the investigated RPC blend with 10 wt. % of EVAc. Besides it creep resistance and thermal resistance of the investigated system is increased to …