0000000000285525

AUTHOR

Anni-maria ÖRmälä

FLUCTUATING TEMPERATURE LEADS TO EVOLUTION OF THERMAL GENERALISM AND PREADAPTATION TO NOVEL ENVIRONMENTS

Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms' ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests…

research product

On the astrobiological relevance of viruses in extraterrestrial ecosystems

AbstractViruses are the dominant form of genetically reproducing entities on Earth. Yet, viruses are mostly neglected in the context of astrobiology due to their non-living nature. In this discussion it is considered whether viruses are likely to be transferred within bacterial endospores to other planetary bodies through lithopanspermia. Interestingly, it seems possible that ecosystems of panspermial origin might yield biospheres in which viruses are absent. The evolutionary pathway of life in these systems might differ significantly from the path observed on Earth. We hypothesize that the difference in the two potential ways for the emergence of life, those being panspermial or local orig…

research product

High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs

The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae) at 25°C and 37°C for four weeks (N = 5). At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial…

research product

Phage therapy

Bacteriophage therapy, the use of viruses that infect bacteria as antimicrobials, has been championed as a promising alternative to conventional antibiotics. Although in the laboratory bacterial resistance against phages arises rapidly, resistance so far has been an only minor problem for the effectiveness of phage therapy. Resistance to antibiotics, however, has become a major issue after decades of extensive use. Should we expect similar problems after long-term use of phages as antimicrobials? Like antibiotics, phages are often noted to be drivers of bacterial evolution. Should we expect phage-treated pathogens to develop a general resistance to phages over time, a resistance against whi…

research product

Data from: Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments

Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms’ ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests…

research product

High Temperature and Bacteriophages Can Indirectly Select for Bacterial Pathogenicity in Environmental Reservoirs

The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae) at 25uC and 37uC for four weeks (N = 5). At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37uC increased bacterial…

research product