0000000000285691

AUTHOR

Ivana Hrivnacova

0000-0003-0120-6337

showing 2 related works from this author

Production of Muons from Heavy Flavor Decays at Forward Rapidity inppand Pb-Pb Collisions atsNN=2.76  TeV

2012

The ALICE Collaboration has measured the inclusive production of muons from heavy-flavor decays at forward rapidity, 2.5 < y < 4, in pp and Pb-Pb collisions at root s(NN) = 2.76 TeV. The p(t)-differential inclusive cross section of muons from heavy-flavor decays in pp collisions is compared to perturbative QCD calculations. The nuclear modification factor is studied as a function of p(t) and collision centrality. A weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a factor of about 3-4 is observed in 6 < p(t) < 10 GeV/c. The suppression shows no significant p(t) dependence.

PhysicsParticle physicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyPerturbative QCDModification factor01 natural sciencesNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsFlavorPhysical Review Letters
researchProduct

Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

2010

ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurement…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsperspectiveHigh Energy PhisicsDetector alignment and calibration methods (lasers sources particle-beams); Particle tracking detectors (Solid-state detectors); Instrumentation; Mathematical Physics01 natural sciences7. Clean energylaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Tracking detectors; High Energy Phisics; Heavy Ion PhysicsDetectors and Experimental TechniquesDetector alignment and calibration methodsNuclear ExperimentInstrumentationphysics.ins-detMathematical PhysicsdetectorsPhysicsLarge Hadron ColliderSolenoidal vector fieldPhysicsDetectorInstrumentation and Detectors (physics.ins-det)particle-beams)collisionsParticle tracking detectors (Solid-state detectors) ; Detector alignment and calibration methods (lasers ; sources ; particle-beams)collaboration; collisions; detector alignment and calibration methods (lasers; sources; particle-beams); detectors; particle tracking detectors (solid-state detectors); performance; perspective; quark-gluon plasmaColliding beam accelerators collisions Pb-Pb collisionsParticle tracking detectors (Solid-state detectors); Detector alignment and calibration methods (lasers sources particle-beams); QUARK-GLUON PLASMAperformancesourcesquark-gluon plasmaDetector alignment and calibration methodFOS: Physical sciencesCosmic ray114 Physical sciencesNuclear physicsTracking detectorsOpticsparticle tracking detectors (solid-state detectors)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsColliderPixel010308 nuclear & particles physicsbusiness.industryhep-exHeavy Ion Physicsdetector alignment and calibration methods (laserscollaborationQuark–gluon plasmaDetector alignment and calibration methods; Particle tracking detectorsALICE (propellant)business
researchProduct