Multi-Scale Modeling of Quantum Semiconductor Devices
This review is concerned with three classes of quantum semiconductor equations: Schrodinger models, Wigner models, and fluid-type models. For each of these classes, some phenomena on various time and length scales are presented and the connections between micro-scale and macro-scale models are explained. We discuss Schrodinger-Poisson systems for the simulation of quantum waveguides and illustrate the importance of using open boundary conditions. We present Wigner-based semiconductor models and sketch their mathematical analysis. In particular we discuss the Wigner-Poisson-Focker-Planck system, which is the starting point of deriving subsequently the viscous quantum hydrodynamic model. Furt…
Entropies and Equilibria of Many-Particle Systems: An Essay on Recent Research
International audience; .This essay is intended to present a fruitful collaboration which has developed among a group of people whose names are listed above: entropy methods have proved over the last years to be an efficient tool for the understanding of the qualitative properties of physically sound models, for accurate numerics and for a more mathematical understanding of nonlinear PDEs. The goal of this essay is to sketch the historical development of the concept of entropy in connection with PDEs of continuum mechanics, to present recent results which have been obtained by the members of the group and to emphasize the most striking achievements of this research. The presentation is by n…