0000000000285911

AUTHOR

C. Y. Fong

Comparison of two structures for transition-metal-based half Heusler alloys exhibiting fully compensated half metallicity

We search for new fully compensated half metals, in which only one electronic spin channel is conducting and there exists no net magnetic moment. We focus on half Heusler alloys and we examine the physical consequence of different crystal structures found in the literature for these compounds, XMnZ, with a transition metal element, such as Cr, Mn, and Fe for X and a nonmetallic element, such as P, Sb and Si for Z. The structures differ in the placement of voids in the L2$_1$ structure of the full Heulser alloy. One structure has the void at (1/4, 3/4, 1/4)a and the other places the void at (0.0, 0.0, 1/2)a. The first structure is expected to have greater d-p hybridization between Mn and the…

research product

Electronic and Magnetic Properties of Li<sub>1.5</sub>Mn<sub>0.5</sub>As Alloys in the Cu<sub>2</sub>Sb Structure

We investigated two formula-units of Li1.5Mn0.5As alloys, such as Li3MnAs2, in the Cu2Sb crystal structure using an ab-initio algorithm. By interchanging Mn with each Li located at different positions of the Li4As2unit cell, four separate alloys are formed. At the optimized lattice constant, two of these alloys are predicted to be ferromagnetic metals and the other two are half metals. The possibility of half metallicity in the first two is also explored. Both the modified Slater-Pauling-Kübler rule and the ionic model can characterize the magnetic moments of the half metals.

research product

Stabilizing and increasing the magnetic moment of half-metals: The role of Li in half-HeuslerLiMnZ(Z=N,P,Si)

Due to their similarities to metastable zinc-blende half-metals, we systematically examined the half-Heusler compounds $\ensuremath{\beta}\text{-LiMn}Z$ ($Z=\text{N},\text{P}$ and Si) for their electronic, magnetic, and stability properties at optimized lattice constants and strained lattice constants that exhibit half-metallic properties. We also report the other phases of the half-Heusler structure ($\ensuremath{\alpha}$ and $\ensuremath{\gamma}$ phases), but they are unlikely to be grown. The magnetic moments of these stable Li-based compounds are expected to reach as high as $4{\ensuremath{\mu}}_{\mathrm{B}}$ per unit cell when $Z=\text{Si}$ and $5{\ensuremath{\mu}}_{\mathrm{B}}$ per un…

research product

Spintronic properties of Li1.5Mn0.5Z (Z=As, Sb) compounds in the Cu2Sb structure

Abstract We have investigated the spintronic properties of two formula units of Li1.5Mn0.5Z (Z=As, Sb), in the Cu2Sb tetragonal crystal structure based on first-principles density-functional theory calculations, at, and near, their equilibrium (minimum total energy) lattice constants. Two groups of configurations, A and B, are formed for each type of alloy by interchanging Mn with each Li located at four different positions with respect to Li4Z2. Mn has four nearest neighbors in group-A and has one nearest neighbor in group-B. The bonding features of the alloys are compared to the ionic bonding in Li4Z2, and the tetragonal structure of cubic LiMnZ. The magnetic moments of these compounds ar…

research product

Two prospective Li-based half-Heusler alloys for spintronic applications based on structural stability and spin–orbit effect

To search for half-metallic materials for spintronic applications, instead of using an expensive trial-and-error experimental scheme, it is more efficient to use first-principles calculations to design materials first, and then grow them. In particular, using a priori information of the structural stability and the effect of the spin–orbit interaction (SOI) enables experimentalists to focus on favorable properties that make growing half-metals easier. We suggest that using acoustic phonon spectra is the best way to address the stability of promising half-metallic materials. Additionally, by carrying out accurate first-principles calculations, we propose two criteria for neglecting the SOI s…

research product

A half-metallic half-Heusler alloy having the largest atomic-like magnetic moment at optimized lattice constant

For half-Heusler alloys, the general formula is XYZ, where X can be a transition or alkali metal element, Y is another transition metal element, typically Mn or Cr, and Z is a group IV element or a pnicitide. The atomic arrangements within a unit-cell show three configurations. Before this study, most of the predictions of half-metallic properties of half-Heusler alloys at the lattice constants differing from their optimized lattice constant. Based on the electropositivity of X and electronegativity of Z for half-Heusler alloys, we found that one of the configurations of LiCrS exhibits half-metallic properties at its optimized lattice constant of 5.803Å, and has the maximum atomic-like magn…

research product