0000000000285931
AUTHOR
David Ariza-ruiz
Iterative approximation to a coincidence point of two mappings
In this article two methods for approximating the coincidence point of two mappings are studied and moreover, rates of convergence for both methods are given. These results are illustrated by several examples, in particular we apply such results to study the convergence and their rate of convergence of these methods to the solution of a nonlinear integral equation and of a nonlinear differential equation.
Wardowski conditions to the coincidence problem
In this article we first discuss the existence and uniqueness of a solution for the coincidence problem: Find p ∈ X such that Tp = Sp, where X is a nonempty set, Y is a complete metric space, and T, S:X → Y are two mappings satisfying a Wardowski type condition of contractivity. Later on, we will state the convergence of the Picard-Juncgk iteration process to the above coincidence problem as well as a rate of convergence for this iteration scheme. Finally, we shall apply our results to study the existence and uniqueness of a solution as well as the convergence of the Picard-Juncgk iteration process toward the solution of a second order differential equation. Ministerio de Economía y Competi…
Existence and uniqueness of solution to several kinds of differential equations using the coincidence theory
The purpose of this article is to study the existence of a coincidence point for two mappings defined on a nonempty set and taking values on a Banach space using the fixed point theory for nonexpansive mappings. Moreover, this type of results will be applied to obtain the existence of solutions for some classes of ordinary differential equations. Ministerio de Economía y Competitividad Junta de Andalucía
Existence and uniqueness to several kinds of differential equations using the Coincidence Theory
The purpose of this article is to study the existence of a coincidence point for two mappings defined on a nonempty set and taking values on a Banach space using the fixed point theory for nonexpansive mappings. Moreover, this type of results will be applied to obtain the existence of solutions for some classes of ordinary differential equations.
An existence and uniqueness principle for a nonlinear version of the Lebowitz-Rubinow model with infinite maximum cycle length
The present article deals with existence and uniqueness results for a nonlinear evolution initial-boundary value problem, which originates in an age-structured cell population model introduced by Lebowitz and Rubinow (1974) describing the growth of a cell population. Cells of this population are distinguished by age a and cycle length l. In our framework, daughter and mother cells are related by a general reproduction rule that covers all known biological ones. In this paper, the cycle length l is allowed to be infinite. This hypothesis introduces some mathematical difficulties. We consider both local and nonlocal boundary conditions.