0000000000285941
AUTHOR
K. P. Marinova
Nuclear moments of neon isotopes in the range fromNe17at the proton drip line to neutron-richNe25
Nuclear moments of odd-A neon isotopes in the range 17 ≤ A ≤ 25 have been determined from optical hyperfine structures measured by collinear fast-beam laser spectroscopy. The magnetic dipole moments of 17 Ne, 23 Ne and 25 Ne, as well as the electric quadrupole moment of 23 Ne are either reported for the first time or improved considerably. The measurements also decide for a 1/2 + ground state of 25 Ne. The behavior of the magnetic moments of the proton drip-line nucleus 17 Ne and its mirror partner 17 N suggests isospin symmetry. Thus, no clear indication of an anomalous nuclear structure is found for 17 Ne. The magnetic moments of the investigated nuclei are discussed in a shell-model appr…
Laser spectroscopy measurement of isotope shifts and nuclear moments of short-lived neon isotopes
Within the scope of a laser spectroscopy study of nuclear structure in the sd shell we are measuring nuclear moments and isotope shifts of neon isotopes. An ultra-sensitive variant of collinear laser spectroscopy [1, 2] is applied to a neutralized fast beam from ISOLDE (CERN). The non-optical detection is based on optical pumping, state selective collisional ionization and β-activity counting. This method gives access in particular to the short-lived isotopes in the extended chain of 17–26,28Ne.
Nuclear spin and moments of 73Kr and odd—even staggering in the radii of light krypton isotopes
Nuclear spectroscopy measurements in the region of neutron-deficient krypton isotopes have indicated that pronounced shape changes and instabilities occur when the nuclei approach the N = Z line. This is confirmed by isotope shift measurements on krypton [1] yielding an increasing inverted odd—even staggering of the radii [2] from 82Kr (N = 46) to 74Kr (N = 38). We have now completed the published data by measuring the hyperfine structure and isotope shift of 73Kr. This is also interesting in context with a recent β-decay study [3]. The feeding of excited states in 73Br gave strong arguments for the ground-state spin and parity of 73Kr to be 3/2−, in contrast to the adopted assignment of 5/…
Nuclear moments and charge radii of argon isotopes between the neutron-shell closures and
We report the measurement of optical isotope shifts for 40−44 Ar relative to 38 Ar from which changes in the mean square nuclear charge radii across the 1f7/2 neutron shell are deduced. In addition, the hyperfine structure of 41 Ar and 43 Ar yields the spins, magnetic dipole and electric quadrupole moments, in particular the spin I = 5/2 for 43 Ar. The investigations were carried out by fast-beam collinear laser spectroscopy using highly sensitive detection based on optical pumping and state-selective collisional ionization. Mean square charge radii are now known from 32 Ar to 46 Ar, covering sd-shell as well as f7/2-shell nuclei. They are discussed in the framework of spherical SGII Skyrme…
Nuclear charge radii of neutron deficient titanium isotopes44Ti and45Ti
Optical isotope shifts of the unstable 44,45Ti isotopes, as well as those of stable 46−50Ti, have been investigated by collinear laser spectroscopy on fast ion beams using an ion guide isotope separator with a cooler-buncher. Changes in mean square charge radii across the neutron 1f7/2 shell are deduced. The evolution of the even-N Ti nuclear radii shows a generally increasing tendency with decreasing neutron number. This behaviour is significantly different to that of the neighbouring Ca isotopes which exhibit a symmetric parabolic behaviour across the shell. The trend of the Ti nuclear radii is consistent with the predictions of the relativistic mean-field theory. The charge radius of 44T…
Nuclear charge radii and electromagnetic moments of radioactive scandium isotopes and isomers
International audience; Collinear laser spectroscopy experiments with the Sc + transition 3d4s 3 D 2 → 3d4p 3 F 3 at λ = 363.1 nm were performed on the 42−46 Sc isotopic chain using an ion guide isotope separator with a cooler-buncher. Nuclear magnetic dipole and electric quadrupole moments as well as isotope shifts were determined from the hyperfine structure for five ground states and two isomers. Extensive multi-configurational Dirac-Fock calculations were performed in order to evaluate the specific mass-shift, M SMS, and field-shift, F, parameters which allowed evaluation of the charge radii trend of the Sc isotopic sequence. The charge radii obtained show systematics more like the Ti r…