0000000000285954
AUTHOR
Aurélie Claraz
ChemInform Abstract: A Catalyst Designed for the Enantioselective Construction of Methyl- and Alkyl-Substituted Tertiary Stereocenters.
Tertiary methyl-substituted stereocenters are present in numerous biologically active natural products. Reported herein is a catalytic enantioselective method for accessing these chiral building blocks using the Mukaiyama-Michael reaction between silyl ketene thioacetals and acrolein. To enable remote enantioface control on the nucleophile, a new iminium catalyst, optimized by three-parameter tuning and by identifying substituent effects on enantioselectivity, was designed. The catalytic process allows rapid access to chiral thioesters, amides, aldehydes, and ketones bearing an α-methyl stereocenter with excellent enantioselectivities, and allowed rapid access to the C4-C13 segment of (-)-b…
Iminium Catalysis (n → π*)
A Catalyst Designed for the Enantioselective Construction of Methyl- and Alkyl-Substituted Tertiary Stereocenters
Tertiary methyl-substituted stereocenters are present in numerous biologically active natural products. Reported herein is a catalytic enantioselective method for accessing these chiral building blocks using the Mukaiyama-Michael reaction between silyl ketene thioacetals and acrolein. To enable remote enantioface control on the nucleophile, a new iminium catalyst, optimized by three-parameter tuning and by identifying substituent effects on enantioselectivity, was designed. The catalytic process allows rapid access to chiral thioesters, amides, aldehydes, and ketones bearing an α-methyl stereocenter with excellent enantioselectivities, and allowed rapid access to the C4-C13 segment of (-)-b…
Catalytic Enantioselective Total Synthesis of (+)-Lycoperdic Acid.
A concise enantio- and stereocontrolled synthesis of (+)-lycoperdic acid is presented. The stereochemical control is based on iminium-catalyzed Mukaiyama–Michael reaction and enamine-catalyzed organocatalytic α-chlorination steps. The amino group was introduced by azide displacement, affording the final stereochemistry of (+)-lycoperdic acid. Penultimate hydrogenation and hydrolysis afforded pure (+)-lycoperdic acid in seven steps from a known silyloxyfuran. peerReviewed
CCDC 1972521: Experimental Crystal Structure Determination
Related Article: Sami Kortet, Aurélie Claraz, Petri M. Pihko|2020|Org.Lett.|22|3010|doi:10.1021/acs.orglett.0c00772