0000000000285964

AUTHOR

Xinming Wang

showing 8 related works from this author

Polyoxometalate-based metal-organic frameworks for boosting electrochemical capacitor performance

2019

Abstract Polyoxometalate-based metal-organic frameworks (POMOFs) possess promising applications as capacitors. Herein, we report the syntheses, structures and electrochemical properties of five copper-containing POMOFs: [CuI4H2(btx)5(PW12O40)2]·2H2O (1), [CuIICuI3(H2O)2(btx)5(PWVI10WV2O40)]·2H2O (2), [CuI6(btx)6(PWVI9WV3O40)]·2H2O (3), [CuI4H2(btx)5(PMo12O40)2]·2H2O (4) and [CuIICuI3(btx)5(SiMoVI11MoVO40)]·4H2O (5) (btx = 1,4-bis(triazol-1-ylmethyl) benzene) with potential applications as capacitors. Compounds 1–3 contain the same Keggin-type polyoxometalate (POM) although with different oxidation states, allowing the analysis of the effect of the electronic population on the capacitance pe…

Materials scienceGeneral Chemical EngineeringPopulation02 engineering and technology010402 general chemistryElectrochemistry01 natural sciencesCapacitanceIndustrial and Manufacturing Engineeringlaw.inventionchemistry.chemical_compoundlawEnvironmental ChemistryBenzeneeducationSupercapacitoreducation.field_of_studyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesCapacitorchemistryChemical engineeringPolyoxometalateMetal-organic framework0210 nano-technologyChemical Engineering Journal
researchProduct

Polyoxometalate Metal–Organic Frameworks: Keggin Clusters Encapsulated into Silver-Triazole Nanocages and Open Frameworks with Supercapacitor Perform…

2019

To investigate the relationship between the structures of polyoxometalate host–guest materials and their energy-storage performance, three novel polyoxometalate-based metal–organic compounds, [Ag10...

Supercapacitor010405 organic chemistryTriazole010402 general chemistry01 natural sciencesCombinatorial chemistry0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundNanocageschemistryPolyoxometalateMetal-organic frameworkPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

A Facile Strategy to Create Electrocatalysts of Highly Dispersive Ni–Mo Sulfide Nanosheets on Graphene by Derivation of Polyoxometalate Coordination …

2021

chemistry.chemical_classificationMaterials scienceSulfideGrapheneCoordination polymerEnergy Engineering and Power Technologylaw.inventionchemistry.chemical_compoundchemistryChemical engineeringlawPolyoxometalateMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)Electrical and Electronic EngineeringACS Applied Energy Materials
researchProduct

One-year characterization of organic aerosol markers in urban Beijing: Seasonal variation and spatiotemporal comparison

2020

Abstract Organic aerosol (OA) is a major component of fine particulate matter (PM); however, only 10%–30% of OA have been identified as individual compounds, and some are used as markers to trace the sources and formation mechanisms of OA. The temporal and spatial coverage of these OA markers nonetheless remain inadequately characterized. This study presents a year-long measurement of 92 organic markers in PM2.5 samples collected at an urban site in Beijing from 2014 to 2015. Saccharides were the most abundant (340.1 ng m−3) species detected, followed by phthalic acids (283.4 ng m−3). In summer, high proportions (8%–24%) of phthalic acids, n-alkanes, fatty acids, and n-alcohols indicate dom…

PollutionEnvironmental Engineering010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectBiogenic emissionsAir pollutionCoal combustion products010501 environmental sciencesSeasonalitymedicine.disease_causemedicine.disease01 natural sciencesPollutionHopanoidsAerosolBeijingEnvironmental chemistrymedicineEnvironmental ChemistryEnvironmental scienceWaste Management and Disposal0105 earth and related environmental sciencesmedia_commonScience of The Total Environment
researchProduct

A High‐Capacity Negative Electrode for Asymmetric Supercapacitors Based on a PMo 12 Coordination Polymer with Novel Water‐Assisted Proton Channels

2020

The development of a negative electrode for supercapacitors is a critical challenge for the next-generation of energy-storage devices. Herein, two new electrodes formed by the coordination polymers [Ni(itmb)4 (HPMo12 O40 )]·2H2 O (1) and [Zn(itmb)3 (H2 O)(HPMo12 O40 )]·4H2 O (2) (itmb = 1-(imidazo-1-ly)-4-(1,2,4-triazol-1-ylmethyl)benzene), synthesized by a simple hydrothermal method, are described. Compounds 1 and 2 show high capacitances of 477.9 and 890.2 F g-1 , respectively. An asymmetric supercapacitor device assembled using 2 which has novel water-assisted proton channels as negative electrode and active carbon as positive electrode shows ultrahigh energy density and power density of…

chemistry.chemical_classificationSupercapacitorMaterials scienceProtonCoordination polymer02 engineering and technologyGeneral ChemistryPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesBiomaterialschemistry.chemical_compoundChemical engineeringchemistryElectrodePolyoxometalateGeneral Materials Science0210 nano-technologyBiotechnologyPower densityDiodeSmall
researchProduct

CCDC 1835308: Experimental Crystal Structure Determination

2020

Related Article: Guangning Wang, Tingting Chen, Carlos J. Gómez-García, Feng Zhang, Mingyi Zhang, Huiyuan Ma, Haijun Pang, Xinming Wang, and Lichao Tan|2020|Small|16|8|doi:10.1002/smll.202001626

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(hexacosakis(mu-oxo)-(mu-phosphato)-tetrakis(1-{[4-(1H-imidazol-1-yl)phenyl]methyl}-1H-124-triazole)-decaoxo-dodeca-molybdenum-nickel tetrahydrate)Experimental 3D Coordinates
researchProduct

CCDC 1851193: Experimental Crystal Structure Determination

2019

Related Article: Yan Hou, Haijun Pang, Carlos J. Gómez-García, Huiyuan Ma, Xinming Wang, Lichao Tan|2019|Inorg.Chem.|58|16028|doi:10.1021/acs.inorgchem.9b02516

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[hexakis(mu-124-triazolyl)-deca-silver(i) (mu-silicato)-tetracosakis(mu-oxo)-dodeca-oxo-dodeca-tungsten]
researchProduct

CCDC 1851423: Experimental Crystal Structure Determination

2019

Related Article: Yan Hou, Haijun Pang, Carlos J. Gómez-García, Huiyuan Ma, Xinming Wang, Lichao Tan|2019|Inorg.Chem.|58|16028|doi:10.1021/acs.inorgchem.9b02516

Space GroupCrystallographyCrystal Systemcatena-[decakis(mu-124-triazolyl)-(mu-borato)-bis(mu-hydroxo)-octacosakis(mu-oxo)-hexaoxo-trideca-silver-dodeca-tungsten]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct