6533b861fe1ef96bd12c57d4
RESEARCH PRODUCT
One-year characterization of organic aerosol markers in urban Beijing: Seasonal variation and spatiotemporal comparison
Ru-jin HuangHaiyan NiYong Jie LiTing WangXinming WangJie GuoThorsten HoffmannYang ChenBi-xian MaiQi ChenLu Yangsubject
PollutionEnvironmental Engineering010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectBiogenic emissionsAir pollutionCoal combustion products010501 environmental sciencesSeasonalitymedicine.disease_causemedicine.disease01 natural sciencesPollutionHopanoidsAerosolBeijingEnvironmental chemistrymedicineEnvironmental ChemistryEnvironmental scienceWaste Management and Disposal0105 earth and related environmental sciencesmedia_commondescription
Abstract Organic aerosol (OA) is a major component of fine particulate matter (PM); however, only 10%–30% of OA have been identified as individual compounds, and some are used as markers to trace the sources and formation mechanisms of OA. The temporal and spatial coverage of these OA markers nonetheless remain inadequately characterized. This study presents a year-long measurement of 92 organic markers in PM2.5 samples collected at an urban site in Beijing from 2014 to 2015. Saccharides were the most abundant (340.1 ng m−3) species detected, followed by phthalic acids (283.4 ng m−3). In summer, high proportions (8%–24%) of phthalic acids, n-alkanes, fatty acids, and n-alcohols indicate dominant contributions of biogenic emission and atmospheric oxidation to OA in Beijing. In winter, when anthropogenic sources prevail, saccharides, polycyclic aromatic hydrocarbons, and hopanes are more prominent (4%–25%). The spatial distributions of these OA markers in China show higher concentrations in northern cities (mainly from coal combustion and biomass burning) than in southern cities (mainly from vehicular emission). The inter-annual variations of OA markers, except for hopanes, from 2001 to 2015 suggest significant alleviation of the primary OA pollution in Beijing, with an average reduction of 35%–89% compared with those before 2008. The diagnostic ratio analyses between OA markers indicate that contributions from coal combustion and biomass burning decreased, whereas those from vehicular emission increased. Increasingly large vehicle fleets have increased hopane concentrations since 2008, but the levels were 35% lower in 2015 than those in 2010–2011 because of the tightening of emission controls for vehicles. This study provides a long-term and geographical comparison (from Beijing to other locations in China and beyond) of OA markers, demonstrating the temporal and spatial variations in primary OA, and calls for more studies on secondary OA.
year | journal | country | edition | language |
---|---|---|---|---|
2020-04-28 | Science of The Total Environment |