0000000000315942

AUTHOR

Yong Jie Li

Measurement report: PM<sub>2.5</sub>-bound nitrated aromatic compounds in Xi'an, Northwest China – seasonal variations and contributions to optical properties of brown carbon

Abstract. Nitrated aromatic compounds (NACs) are a group of key chromophores for brown carbon (light-absorbing organic carbon, i.e., BrC) aerosol, which affects radiative forcing. The chemical composition and sources of NACs and their contributions to BrC absorption, however, are still not well understood. In this study, PM 2.5 -bound NACs in Xi'an, Northwest China, were investigated for 112 daily PM 2.5 filter samples from 2015 to 2016. Both the total concentrations and contributions from individual species of NACs show distinct seasonal variations. The seasonally averaged concentrations of NACs are 2.1 (spring), 1.1 (summer), 12.9 (fall), and 56 ng m −3 (winter). Thereinto, 4-nitrophenol …

research product

Water-Insoluble Organics Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and Optical Properties.

The chromophores responsible for light absorption in atmospheric brown carbon (BrC) are not well characterized, which hinders our understanding of BrC chemistry, the links with optical properties, and accurate model representations of BrC to global climate and atmospheric oxidative capacity. In this study, the light absorption properties and chromophore composition of three BrC fractions of different polarities were characterized for urban aerosol collected in Xi'an and Beijing in winter 2013-2014. These three BrC fractions show large differences in light absorption and chromophore composition, but the chromophores responsible for light absorption are similar in Xi'an and Beijing. Water-ins…

research product

Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties.

Light-absorbing organic carbon (i.e., brown carbon or BrC) in the atmospheric aerosol has significant contribution to light absorption and radiative forcing. However, the link between BrC optical properties and chemical composition remains poorly constrained. In this study, we combine spectrophotometric measurements and chemical analyses of BrC samples collected from July 2008 to June 2009 in urban Xi'an, Northwest China. Elevated BrC was observed in winter (5 times higher than in summer), largely due to increased emissions from wintertime domestic biomass burning. The light absorption coefficient of methanol-soluble BrC at 365 nm (on average approximately twice that of water-soluble BrC) w…

research product

Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing

Sulfate and nitrate from secondary reactions remain as the most abundant inorganic species in atmospheric particle matter (PM). Their formation is initiated by oxidation (either in gas phase or particle phase), followed by neutralization reaction primarily by NH3, or by other alkaline species such as alkaline metal ions if available. The different roles of NH3 and metal ions in neutralizing H2SO4 or HNO3, however, are seldom investigated. Here we conducted semi-continuous measurements of SO4 2−, NO3 −, NH4 +, and their gaseous precursors, as well as alkaline metal ions (Na+, K+, Ca2+, and Mg2+) in wintertime Beijing. Analysis of aerosol acidity (estimated from a thermodynamic model) indicat…

research product

One-year characterization of organic aerosol markers in urban Beijing: Seasonal variation and spatiotemporal comparison

Abstract Organic aerosol (OA) is a major component of fine particulate matter (PM); however, only 10%–30% of OA have been identified as individual compounds, and some are used as markers to trace the sources and formation mechanisms of OA. The temporal and spatial coverage of these OA markers nonetheless remain inadequately characterized. This study presents a year-long measurement of 92 organic markers in PM2.5 samples collected at an urban site in Beijing from 2014 to 2015. Saccharides were the most abundant (340.1 ng m−3) species detected, followed by phthalic acids (283.4 ng m−3). In summer, high proportions (8%–24%) of phthalic acids, n-alkanes, fatty acids, and n-alcohols indicate dom…

research product

Determination of n-alkanes, PAHs and hopanes in atmospheric aerosol: evaluation and comparison of thermal desorption GC-MS and solvent extraction GC-MS approaches

Organic aerosol (OA) constitutes a large fraction of fine particulate matter (PM) in the urban air. However, the chemical nature and sources of OA are not well constrained. Quantitative analysis of OA is essential for understanding the sources and atmospheric evolution of fine PM, which requires accurate quantification of some organic compounds (e.g., markers). In this study, two analytical approaches, i.e., thermal desorption (TD) gas chromatography-mass spectrometry (GC-MS) and solvent extract (SE) GC-MS were evaluated for the determination of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), and hopanes in ambient aerosol. For the SE approach, the recovery obtained is 89.3–101.5&…

research product

Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of pm<sub>2.5</sub> from xi'an, northwestern china

Abstract. The sources, formation mechanism and amount of organosulfates (OS) in atmospheric aerosol are not yet well understood, partly due to the lack of authentic standards for quantification. In this study, we report an improved robust procedure for the synthesis of organosulfates with different functional groups. Nine authentic organosulfate standards were synthesized and four standards (benzyl sulfate, phenyl sulfate, glycolic acid sulfate, and hydroxyacetone sulfate) were used to quantify their ambient concentrations. The authentic standards and ambient aerosol samples were analyzed using an optimized ultra performance liquid chromatography–electrospray ionization-tandem mass spectrom…

research product