0000000000286099
AUTHOR
Mackenzie L. Zippay
An improved noninvasive method for measuring heartbeat of intertidal animals
Since its emergence two decades ago, the use of infrared technology for noninvasively measuring the heartbeat rates of invertebrates has provided valuable insight into the physiology and ecology of intertidal organisms. During that time period, the hardware needed for this method has been adapted to currently available electronic components, making the original published description obsolete. This article reviews the history of heartbeat sensing technology, and describes the design and function of a modern and simplified infrared heartbeat rate sensing system compatible with many intertidal and marine invertebrates. This technique overcomes drawbacks and obstacles encountered with previous …
Dynamic Energy Budget model parameter estimation for the bivalve Mytilus californianus: Application of the covariation method
Dynamic Energy Budget (DEB) models serve as a powerful tool for describing the flow of energy through organisms from assimilation of food to utilization for maintenance, growth and reproduction. The DEB theory has been successfully applied to several bivalve species to compare bioenergetic and physiological strategies for the utilization of energy. In particular, mussels within the Mytilus edulis complex (M. edulis, M. galloprovincialis, and M. trossulus) have been the focus of many studies due to their economic and ecological importance, and their worldwide distribution. However, DEB parameter values have never been estimated for Mytilus californianus, a species that is an ecological domin…
A bioenergetics framework for integrating the effects of multiple stressors: Opening a 'black box' in climate change research
Climate change is already impacting marine ecosystems across a range of scales, from individual physiology, to changes in species interactions and community structure, and ultimately to patterns in geographic distribution. Predicting how marine ecosystems will respond to environmental change is a signifi cant challenge because vulnerability to climatic and non-climatic stressors is highly variable, and depends on an organism’s functional traits, tolerance to stressors, and the environment in which it lives. We present a mechanistic approach based on biophysical and dynamic energy budget models that integrates the cumulative effects of multiple environmental stressors (temperature and food) …