0000000000286311
AUTHOR
Adriana Olbert-majkut
Raman spectroscopy and crystal-field split rotational states of photoproducts CO and H2 after dissociation of formaldehyde in solid argon.
Raman signal is monitored after 248 nm photodissociation of formaldehyde in solid Ar at temperatures of 9-30 K. Rotational transitions J = 2 ← 0 for para-H(2) fragments and J = 3 ← 1 for ortho-H(2) are observed as sharp peaks at 347.2 cm(-1) and 578.3 cm(-1), respectively, which both are accompanied by a broader shoulder band that shows a split structure. The rovibrational spectrum of CO fragments has transitions at 2136.5 cm(-1), 2138.3 cm(-1), 2139.9 cm(-1), and 2149 cm(-1). To explain the observations, we performed adiabatic rotational potential calculations to simulate the Raman spectrum. The simulations indicate that the splitting of rotational transitions is a site effect, where H(2) …
Raman spectroscopy and high-overtone driven isomerization of glyoxylic acid in solid argon
High-overtone induced chemistry of glyoxylic acid isolated in a low-temperature argon matrix was investigated using Raman spectroscopy. The Raman spectra of two most stable conformers of glyoxylic acid are presented. Upon excitation in high overtone vibrational bands by 532 nm irradiation of the lowest energy conformer most abundant in neat deposited sample, the isomerization of glyoxylic acid was observed. The process most plausible proceeds via absorption into the fifth vibrational overtone state of the OH group or its combination with the torsional vibrational transition. The assignment of the fundamental vibrational spectra was assisted by quantum chemical harmonic and anharmonic vibrat…
Photolysis of HCOOH monomer and dimer in solid argon: Raman characterization of in situ formed molecular complexes
Raman spectroscopy combined with the matrix isolation technique was employed to study the 193-nm photodecomposition products of formic acid in an argon matrix. The Raman-active fundamentals belonging to the CO(2) + H(2) and CO + H(2)O photoproducts were assigned. Also, bands due to Fermi resonance between the stretching vibration (nu(1)) and the overtone of the bending mode (2nu(2)) of CO(2) were identified. Both ortho- and para-H(2) molecules were identified from their rotational lines S(0)(1) and S(0)(0), respectively. These bands appeared upon matrix annealing as well as after prolonged photolysis. Additionally, photolysis of FA dimers produces oxalic acid and its secondary photoproducts…
Light-induced opening and closing of the intramolecular hydrogen bond in glyoxylic acid.
The isomerization process of glyoxylic acid (GA) conformers and their complexes with a water molecule were studied in a low temperature argon matrix. The research target was to understand how starting conformation and complexation affects the near-IR (NIR) induced conformer interconversion. The most stable GA conformer (Tc) is characterized by an intramolecular hydrogen bond, and it is found to undergo light-induced conformer interconversion slower than the open (Tt) conformer. Upon complexation with water, the isomerization processes slow down in the case of the Tc conformer, whereas for the Tt-based complex the influence of water is negligible on the isomerization process.
Raman spectroscopy and crystal-field split rotational states of photoproducts CO and H2 after dissociation of formaldehyde in solid argon
Raman signal is monitored after 248 nm photodissociation of formaldehyde in solid Ar at temperatures of 9–30 K. Rotational transitions J = 2 ← 0 for para-H2 fragments and J = 3 ← 1 for ortho-H2 are observed as sharp peaks at 347.2 cm−1 and 578.3 cm−1, respectively, which both are accompanied by a broader shoulder band that shows a split structure. The rovibrational spectrum of CO fragments has transitions at 2136.5 cm−1, 2138.3 cm−1, 2139.9 cm−1, and 2149 cm−1. To explain the observations, we performed adiabatic rotational potential calculations to simulate the Raman spectrum. The simulations indicate that the splitting of rotational transitions is a site effect, where H2 molecules can resi…
Corrigendum to “Light-induced, site-selective isomerization of glyoxylic acid in solid xenon” [Chem. Phys. Lett. 616–617 (2014) 91–97]
Raman spectroscopy of acetic acid monomer and dimers isolated in solid argon
Acetic acid (AA) monomer and its dimers were studied by means of Raman spectroscopy combined with the matrix isolation technique. All fundamental bands of CH3COOH monomer were identified, including the CH3 torsional mode. Additionally, three overtone or combination modes were observed as a result of their enhanced intensities by Fermi resonance (FR). Twenty bands of the cyclic dimer (C2h) were identified and assigned, among which appear all intermolecular modes. Bands due to two different higher energy forms of the dimer were also identified. The experimental assignments are supported by ab initio calculations. Copyright © 2011 John Wiley & Sons, Ltd.
Raman spectroscopy of formic acid and its dimers isolated in low temperature argon matrices
Raman spectroscopy combined with matrix isolation technique was employed to study formic acid monomer and its dimers. Nine fundamentals of the HCOOH monomer were identified. Additionally, the OH torsion overtone is observed and it is engaged in Fermi resonance with the δCOH mode. Several bands of the cyclic (C2h) dimer were identified and assigned. The less stable open form (Cs) of the dimer was also present in the experiment. Three intermolecular modes for the cyclic and one mode for the open dimer were found in the low frequency region. The experimental studies were supported by harmonic and anharmonic DFT calculations.
Isolated glyoxylic acid-water 1:1 complexes in low temperature argon matrices
Abstract The 1:1 hydrogen bonded complexes between glyoxylic acid (GA) and water are studied in low temperature argon matrices. Four different complex structures were found in deposited matrices. The lowest energy conformer (T1) of GA was found to form complex, where the water molecule was attached to the opposite side of the intramolecular hydrogen bond in the molecule (T1B). Interestingly, this complex was estimated to be +8.0 kJ mol −1 higher in energy than the most stable structure (T1A), where the water is inserted into the internal hydrogen bond, and also found in solid argon but in smaller abundance. For the second-lowest energy conformer of GA (T2), the two lowest-energy complex str…
Light-induced, site-selective isomerization of glyoxylic acid in solid xenon
Abstract The isomerization of glyoxylic acid (GA) and its water complex was studied in a low temperature xenon matrix. The aim of these studies was to understand how xenon environment affects the cis-trans GA interconversion upon near infrared irradiation. In solid xenon, the GA conformers are embedded in two different matrix sites. These show up as different vibrational bands of GA that exhibit different kinetic rates of isomerization. Upon complexation with water, the isomerization process slows down. Xenon matrix appears not to affect energy relaxation process via intramolecular or intermolecular hydrogen bond as compared with previous experiments in an argon.