0000000000286591
AUTHOR
Chris Q. Doe
The Embryonic Central Nervous System Lineages ofDrosophila melanogaster
In Drosophila, central nervous system (CNS) formation starts with the delamination from the neuroectoderm of about 30 neuroblasts (NBs) per hemisegment. They give rise to approximately 350 neurons and 30 glial cells during embryonic development. Understanding the mechanisms leading to cell fate specification and differentiation in the CNS requires the identification of the NB lineages. The embryonic lineages derived from 17 NBs of the ventral part of the neuroectoderm have previously been described (Bossing et al., 1996). Here we present 13 lineages derived from the dorsal part of the neuroectoderm and we assign 12 of them to identified NBs. Together, the 13 lineages comprise approximately …
Identification and cell lineage of individual neural precursors in the Drosophila CNS.
The Drosophila CNS is complex enough to serve as a model for many of the molecular, cellular and developmental functions of the vertebrate CNS, yet simple enough for single-cell analysis. Recent advances have provided molecular markers that allow most Drosophila CNS precursors to be uniquely identified, as well as methods for determining the complete cell lineage of each precursor. A detailed understanding of wild-type neurogenesis, combined with existing molecular genetic techniques, should provide insight into the fundamental mechanisms that generate neuronal and glial diversity.