0000000000286632

AUTHOR

Kajohn Boonrod

Homemade Site Directed Mutagenesis of Whole Plasmids

Site directed mutagenesis of whole plasmids is a simple way to create slightly different variations of an original plasmid. With this method the cloned target gene can be altered by substitution, deletion or insertion of a few bases directly into a plasmid. It works by simply amplifying the whole plasmid, in a non PCR-based thermocycling reaction. During the reaction mutagenic primers, carrying the desired mutation, are integrated into the newly synthesized plasmid. In this video tutorial we demonstrate an easy and cost effective way to introduce base substitutions into a plasmid. The protocol works with standard reagents and is independent from commercial kits, which often are very expensi…

research product

Analysis of tombusvirus revertants to identify essential amino acid residues within RNA-dependent RNA polymerase motifs

The RNA-dependent RNA polymerase (RdRp) of Tomato bushy stunt virus (TBSV) contains an arginine- and proline-rich (RPR) motif. This motif functions as an RNA-binding domain and is essential for tombusvirus replication. A mutant carrying three arginine substitutions in this motif rendered the virus unable to replicate in Nicotiana benthamiana plants and protoplasts. When the replicase function was provided in trans, by expressing the TBSV RdRp in N. benthamiana plants, an infectious variant could be isolated. Sequence analysis showed that only the substituted glycine residue (position 216) had reverted to arginine; all other substitutions remained unchanged. This finding suggested that stron…

research product

A simple method to estimate the isoelectric point of modified Tomato bushy stunt virus (TBSV) particles

We present a simple method to estimate the isoelectric point (pI) of Tomato Bushy Stunt particles. We demonstrate that the combination of agarose gels with different pH buffers can be used to electrophorese the virus particles and their migration patterns can be compared. This method allows us to estimate the pI of the virus particles (wild type, wt, and genetically modified particles) and to monitor the effect of the pI of modified peptide side chains of the viral capsid subunit on the pI of the whole virus particle.

research product

Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance.

Crop loss due to viral diseases is still a major problem for agriculture today. We present a strategy to achieve virus resistance based on the expression of single-chain Fv fragments (scFvs) against a conserved domain in a plant viral RNA-dependent RNA polymerase (RdRp), a key enzyme in virus replication. The selected scFvs inhibited complementary RNA synthesis of different plant virus RdRps in vitro and virus replication in planta. Moreover, the scFvs also bound to the RdRp of the distantly related hepatitis C virus. T(1) and T(2) progeny of transgenic lines of Nicotiana benthamiana expressing different scFvs either in the cytosol or in the endoplasmic reticulum showed varying degrees of r…

research product